

DEVELOP A REMOTE CONTROL AIRCRAFT FOR CROP SPRAYING

NOOR SHUHADA BINTI HUSSIN (2000127777)

A thesis submitted in partial fulfillment of the requirements for the awards of Bachelor Engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

OCTOBER 2004

"I declared that I read this thesis and in my point of view this thesis is qualified in term of scope and quality for the purpose of awarding the Bachelor of Engineering (Hons) in Mechanical"

Signed	:					٠,		•	-	-	,	
Date												

Project Advisor

Mrs. Wan Mazlina Binti Wan Mohamed

Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM) 40450 Shah Alam

Selangor

ABSTRACT

This is a report of our final year project title "Develop a Remote Control Aircraft for Crop Spraying". This final project was supervised by Mrs. Wan Mazlina Wan Mohamed. Through this project, we are encouraged to find in detail about the Unmanned Aerial Vehicle (UAV) application on agriculture. We have to analyze how far the used of the UAV in agriculture sector at Malaysia. From the discussion with our advisor, Mrs. Wan Mazlina, we have to develop a prototype model of a sprayer that can be used either to spray fertilizer or pesticide by a remote control aircraft. We had to decide which type of the UAV that is suitable for this project whether it is fixed wing type or rotary wing. After we had developed the sprayer model, testing was conducted in order to make sure that the model can be function well. Then, we manage to measure the volume flow rate and the coverage besides to find the dimension of the model. Finally, there must be some recommendation to improve the prototype model. With that recommendation, we hope that it can be used as a guide to other students to build a better model in the future.

TABLE OF CONTENTS

CONTENTS	}		PAGE
PAGE TITLE	Ξ		i
ACKNOWLE	EDGE	MENT	ii
ABSTRACT			iii
TABLE OF C	CONTI	ENTS	iv
LIST OF TAI	BLES		viii
LIST OF FIG	URES	;	ix
LIST OF AB	BREV	TATIONS	xi
CHAPTER I	INT	RODUCTION	
	1.0	History of Aerial Vehicle in Agriculture	1
	1.1	UAV Application	2
	1.2	UAV Application in Agriculture	3
	1.3	Objective of Project	4
	1.4	Scopes of Project	4

CHAPTER II LITERATURE REVIEW

2.0	Knapsack Spray Operations					
2.1	Components of Knapsack Sprayer	5				
	2.1.1 Tank	6				
	2.1.2 Hand pumps	6				
	2.1.3 Filtration system	6				
	2.1.4 Control valves and pressure regulation	7				
	2.1.5 Nozzle tip	7				
2.2	Spray Applications	9				
	2.2.1 Single lance	9				
	2.2.2 Multiple booms	10				
2.3	Calibrating a Knapsack Sprayer					
	2.3.1 Determine the walking speed	13				
	2.3.2 Determine the spray volume	13				
	2.3.3 Determine the swath width	14				
	2.3.4 Calculate amount of water	14				
	2.3.5 Example of calculation	14				
2.4	Conducting Spray Operations	15				
	2.4.1 Spray sure	15				
	2.4.2 Wind condition	15				
	2.4.3 Wind speed	16				
	2.4.4 Smoke signals	16				
	2.4.5 Temperature	16				
	2.4.6 Humidity	17				
	2.4.7 Safe distances	17				
	2.4.8 Records	18				
2.5	Spray Design for Manned Aircraft	18				
	2.5.1 Aircraft spraying system	18				