

SHAPE OPTIMIZATION OF CANTILEVER BEAM

HAMDAN BIN ABD HAMID (2001618053)

BACHELOR ENGINEERING (HONS) (MECHANICAL) UNIVERSITI TEKNOLOGI MARA (UITM) APRIL 2005 "I declared that this thesis is the result of my own work except the ideas and summaries which I have clarified their sources. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any degree"

> Signed : Date :

Han la.

Hamdan Bin Abdul Hamid UiTM No : 2001618053

ABSTRACT

Shape optimization is the determination of the boundary which best meets the design criteria, while simultaneously satisfying design constraints. In this research, shape optimization of a cantilever beam is a process to obtain the optimum shape of the beam while the stress and deflection are within the design constraints (design requirement). For shape optimization of a cantilever beam the objective function to be minimized is its total volume, the design variable is its thickness and the state variable to be constrained is stress and deflection. ANSYS software was used for conducting shape optimization process. During optimization, stresses and displacements were obtained using ANSYS finite element model. For that purpose finite element module was set up together with the optimization parameters. The final result of shape optimization from ANSYS were obtained using the Subproblem Method and First Order Method. For Subproblem Method the optimum total volume value is 3.6156 in³ at the iteration number twelve and for First Order Method the optimum total volume is 3.609 in³ at the iteration number fifteen.

TABLE OF CONTENTS

CONTENTS PAGE

PAGE TITLE	i
ACKNOLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi

CHAPTER 1 INTRODUCTION

1.0	BACK	GROUND	1
1.1	SHAPE OPTIMIZATION		
1.2	OBJECTIVES		
1.3	METH	ODOLOGY	4
	1.3.1	Literature Review	4
	1.3.2	Conduct Optimization in ANSYS	4
	1.3.3	Validation of ANSYS Results	5
	1.3.4	Reporting	5

CHAPTER II OPTIMIZATION THEORY

2.0 OPTIMIZATION STATEMENT

6

2.1	ONE [DIMENSIONAL SEARCH	9
	2.1.1	Alternate Equal Interval Search	9
	2.1.2	Polynomial Interpolation	10
2.2	SEAR	CH DIRECTION	13
2.3	SEQU	ENTIAL UNCONSTRAINED	
	MINIM	IZATION TECHNIQUES (SUMT)	14
2.4	ANSY	S	16
2.5	BASIC	DEFINITIONS	16
2.6	GUIDELINES ON CHOOSING OPTIMIZATIO		
	VARIA	ABLES	20
	2.6.1	Choosing Design Variables	20
	2.6.2	Choosing State Variables	21
	2.6.3	Choosing The Objective Function	22
2.7	SUBP	ROBLEM APPROXIMATION METHOD	23
	2.7.1	Approximations	23
	2.7.2	Conversion To An Unconstrained	
		Problem	24
	2.7.3	Convergence Checking	24
2.8	FIRST	ORDER METHOD	25
	2.8.1	Convergence Checking	26

CHAPTER III BENDING THEORY

27

CHAPTER IV FINITE ELEMENT THEORY

4.0	FINITE ELEMENT ANALYSIS	31
-----	-------------------------	----