PROPERTIES OF PARTICLEBOARD MADE FROM RICE HUSKS AND COCONUT HUSKS IN RELATION OF VARYING RESIN CONTENT AND BOARD DENSITY

By

MAZLINDA BINTI MARZUKI

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Bio-composite Technology in the Faculty of Applied Sciences, Universiti Teknologi MARA

January 2015

CANDIDATE'S DECLARATION

I declare that the work in this final year project was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. The final year project report has been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the even that my final year project is found to violet the condition mention above, I voluntarily waive the right of conferment of my bachelor degree and agree to be subjected to the disciplinary rules and regulation of University Technology MARA.

Name of candidate	: Mazlinda Binti Marzuki
Candidate's ID No	: 2011960395
Programme	: Bachelor of Science (Hons.) Bio-Composite Technology
Faculty	: Faculty of Applied Science
Title	: Properties of Particleboard Made from the Rice husk and
	Coconut Husk in Relation of Varying Resin Content and
	Board density

Mazlinda Binti Marzuki Date

: IS JANUARY 2015

PROPERTIES OF PARTICLEBOARD MADE FROM THE RICE HUSKS AND COCONUT HUSKS IN RELATION OF VARYING RESIN CONTENT AND BOARD DENSITY

By

MAZLINDA BINTI MARZUKI

January 2015

Rice husk and coconut husk were discarded as agriculture residues that are available in large quantities and cheap. Moreover, the rice husks and coconut husks are estimated to be burned after harvest. Hereby, I propose the usage waste like rice husks and coconut husks as potential raw material for particleboard provide an alternative in reducing material from wood particles. This study determined the properties of particleboard made of a mixture of rice husks (50%) and coconut husks (50%). At the same time, the effects of board density (600kg/m³, 700 kg/m³, and 800 kg/m³) and varying resin (Phenol formaldehvde) contents which are 8, 10, or 12 % were investigated. Based on the results modulus of rupture (MOR), modulus of elasticity (MOE), and internal bonding (IB) were increased by increasing resin content and board density except for thickness swelling (TS) and water absorption (WA) that were decreased for each increasing board density and resin contents. In this study the higher value of MOR (11.12 MPa) and MOE (1238.51MPa) is indicates from 800 kg/m³ with 12% of resin content. The better value of IB is 0.125 MPa from 700 kg/m³ at 10% resin content respectively. The particleboards were evaluated and the test conducted according to the European Standard (EN 312:2003).

Keywords: particleboard, Phenol formaldehyde, density, rice husks, coconut husks

TABLES OF CONTENTS

		Page
APPI DEDI CANI ACKI TABI LIST LIST LIST LIST ABST	ROVAL SHEET ICATION DIDATE'S DECLARATION NOWLEDGEMENTS LES OF CONTENTS OF TABLES OF FIGURES OF FIGURES OF PLATES OF ABBREVIATIONS TRACT TRAK	
CHAI	PTER 1 INTRODUCTION	
1.1 1.2 1.3 1.4	Background of study Problem statement Significant of study Objective of study	1 4 5 6
CHAP	PTER 2 LITERATURE REVIEW	
2.1 2.2 2.3	Wood Composite Industry in Malaysia 2.1.1 Particleboard 2.1.2 Markets of Particleboard Manufacture of Particleboard Properties of Particleboard	7 7 8 9 10
2.4 2.5 R	Uses of Particleboard aw Material in Particleboard Industry	11
26	 2.5.1 Rubberwood (<i>Hevea brasiliensis</i>) 2.5.2 Acacia Mangium 2.5.3 Mixed Tropical Hardwoods 2.5.4 Rice (<i>Oryza sativa</i>) husk 2.5.5 Coconut (<i>Cocos nucifera</i>) husks Effect of Board Density 	11 12 13 14
2.7	Effect of Varying Resin Content	16
CHAF	PTER 3 METHODOLOGY	
3.1	Material Procurement 3.1.1 unscreening 3.1.2 Drying 3.1.2.1 Air dying	19 21 21 21

vi

	3.1.2.2 Oven drying	22
3.2	Board Manufacture	22
	3.2.1 Glue mixing and blending	23
	3.2.2 Mat forming	23
	3.2.3 Pressing	23
	3.2.3.1 Pre-pressing	24
	3.2.3.2 Hot Pressing	24
3.3	Trimming and cutting	24
3.4	Panel testing	25
	3.4.1 Mechanical Testing	26
	3.4.1.1 Bending testing	26
	3.4.1.2 Internal bonding	28
	3.4.2 Physical testing	29
	3.4.2.1 Thickness swelling (TS) test	29
	3.4.2.2 Water Absorption (WA) test	30
3.5	Experimental Design	31

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Mechanical and physical properties	32
4.2	Statistical significance	33
4.3	Effect of resin content on mechanical properties	34
4.4	Effect of resin content on physical properties	36
4.5	Effect of board density on mechanical properties	37
4.6	Effect of density on physical properties of particleboard	39

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 5.2	Conclusion recommendations	¥	40 41
REF	ERENCES		45
APP	ENDICES		49
VITA	NE		59