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ABSTRACT 

In the age of wide digital usage, text classification is one of the significant prominent 
attribute required in order to automatically arrange emails, articles, and other textual 
data in an organization. Unclassified data can lead to slower data retrieval thus a 
reliable method is required to effectively retrieve data efficiently and in systematic 
manner. Ant Colony Optimization (ACO) is a bio-inspired technique that was 
introduced to solve Non-Polynomial hard problem of high text data dimension that is 
similar to Traveling Salesman Problem (TSP) using probabilistic way. Pheromone 
concept is the main criterion that distinguish ACO to other algorithms. Based on the 
concept, pheromone saturation is used to combine stackable solution pattern that is 
discovered while straying to different term node to build a path. ACO classification 
accuracy is compared to Genetic Algorithm classifier which also a wrapper method. 
On integration of the technique, ACO is proposed to work in a multicore-multithread 
environment to gain additional execution time advantage. In multicore-multithread 
environment, the adjustment aims to make artificial ants communicate across the 
physical core of processor. As a trade to the investment for more computing power, 
the execution time reduction is expected to show an improvement without 
compromising the original classification accuracy. The unthreaded and multicore-
multithreaded version of ACO was experimented and compared in term of accuracy 
and execution time. It was found that the result show a positive improvement. 
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