
UNIVERSITY TEKNOLOGI MARA 

ANT COLONY ALGORITHM FOR 
TEXT CLASSIFICATION IN 

MULTICORE-MULTITHREAD 
ENVIRONMENT 

AHMAD NAZMI BIN FADZAL 

Thesis submitted in fulfilment 
of the requirements for the degree of 

Master of Science 

Faculty of Computer and Mathematical Sciences 

January 2017 



ABSTRACT 

In the age of wide digital usage, text classification is one of the significant prominent 
attribute required in order to automatically arrange emails, articles, and other textual 
data in an organization. Unclassified data can lead to slower data retrieval thus a 
reliable method is required to effectively retrieve data efficiently and in systematic 
manner. Ant Colony Optimization (ACO) is a bio-inspired technique that was 
introduced to solve Non-Polynomial hard problem of high text data dimension that is 
similar to Traveling Salesman Problem (TSP) using probabilistic way. Pheromone 
concept is the main criterion that distinguish ACO to other algorithms. Based on the 
concept, pheromone saturation is used to combine stackable solution pattern that is 
discovered while straying to different term node to build a path. ACO classification 
accuracy is compared to Genetic Algorithm classifier which also a wrapper method. 
On integration of the technique, ACO is proposed to work in a multicore-multithread 
environment to gain additional execution time advantage. In multicore-multithread 
environment, the adjustment aims to make artificial ants communicate across the 
physical core of processor. As a trade to the investment for more computing power, 
the execution time reduction is expected to show an improvement without 
compromising the original classification accuracy. The unthreaded and multicore-
multithreaded version of ACO was experimented and compared in term of accuracy 
and execution time. It was found that the result show a positive improvement. 

IV 



ACKNOWLEDGEMENT 

Firstly, I wish to thank God for giving me the opportunity to embark on my master 
programme and for completing this long and challenging journey successfully. My 
gratitude and thanks go to my supervisor Prof Madya Dr. Mazidah Puteh, with co-
supervisor, Assoc. Prof. Dr. Adnan Ahmad and Dr. Norlela Samsudin. Thank you for 
the support, patience and ideas in assisting me with this project. 

Finally, this thesis is dedicated to the loving memory of my very dear mother and late 
father for the vision and determination to educate me. This piece of victory is 
dedicated to both of you. Alhamdulillah. 

v 



TABLE OF CONTENTS 

Page 

CONFIRMATION BY PANEL OF EXAMINERS ii 

AUTHOR'S DECLARATION iii 

ABSTRACT iv 

ACKNOWLEDGEMENT v 

TABLE OF CONTENTS vi 

LIST OF TABLES ix 

LIST OF FIGURES x 

CHAPTER ONE: INTRODUCTION 1 

1.1 Background of Study 2 

1.2 Problem Statement 3 

1.3 Objectives 6 

1.4 Scope 6 

1.5 Research Methodology 7 

1.6 Significance 8 

1.7 Summary and Contribution 9 

1.8 Term Definition 9 

1.9 Thesis Organization 11 

CHAPTER TWO: LITERATURE REVIEW 12 

2.1 Introduction 12 

2.2 Text Classification 12 

2.3 Genetic Algorithm 14 

2.4 Support Vector Machine 20 

2.5 Ant Colony Algorithm 24 

2.5.1 Pheromone Reading 29 

2.5.2 Evaporation 30 

2.5.3 Stagnation 31 

vi 



2.5.4 Factors in Choosing ACO over GA and other Techniques 32 

2.6 Multicore-Multithread Environment 33 

2.6.1 Threading Over Parallelism for Multicore-Multithread Representation 35 

2.6.2 Staying Idle 36 

2.6.3 Code Development of Multitasking 38 

2.6.4 Multithreading in Software Level 39 

2.6.5 Multiplexing Time Division 40 

2.6.6 Schedule of Multiplexing 41 

2.6.7 Multithreading in Hardware Level 43 

2.6.8 Advantages and Disadvantages Multicore Processor 44 

2.6.9 Backup Slower Threads 46 

2.7 Summary 49 

CHAPTER THREE: RESEARCH METHODOLOGY 50 

3.1 Introduction 50 

3.2 Phase 1: Knowledge Acquisition 51 

3.3 Phase 2: Text Data Collection and Identification 53 

3.3.1 Data Pre-processing 54 

3.3.2 GA Experiment Setting 58 

3.3.3 Development of ACO 60 

3.3.3.1 Simulation of Artificial Ant Visiting Term Nodes 63 

3.3.3.2 Stopping Criterion 65 

3.3.4 ACO Text Classification 66 

3.3.4.1 Skip Common Term Calculation with Same Frequency 66 

3.3.4.2 Obtaining Classification Rule Every Cycle 68 

3.3.4.3 Choosing Next State 69 

3.3.4.4 Pheromone Usage 72 

3.3.5 Set Up Multicore-Multithread Environment 73 

3.3.6 Multicore-Multithread ACO Model 75 

3.3.6.1 Overcome Unstable Execution Speed 78 

3.3.6.2 Signalling and Stopping Multiple Threads 79 

3.4 Phase 3: Evaluation on Multicore-Multithread ACO Model 82 

3.5 Summary 84 

vn 


