

UNIVERSITI TEKNOLOGI MARA

**RECLAMATION OF NUTRIENTS
FROM KENAF RETTED
WASTEWATER USING MODIFIED
ULTRAFILTRATION MEMBRANE**

NABILAH HUDA BINTI ABDUL HALIM

Thesis submitted in fulfillment
of the requirements for the degree of
Master of Science

Faculty of Civil Engineering

January 2016

ABSTRACT

Increase in demand of fiber from kenaf industry, increases the water usage for water retting. Traditional water retting method producing large amount of water in greenish color, high in suspended solids, high BOD load, the reduction of DO, high nutrient levels and non-biodegradable substances where discharge directly into watercourses triggering eutrophication in aquatic ecosystem. The aim of this research is to formulate and fabricate membrane for reclamation of nutrients from kenaf retted wastewater. The flat-sheet Polysulfone (PSF) membrane were prepared by dry/wet phase separation technique with various Polyvinyl-pyrolidone (PVP) additive concentrations (0, 1.5, 4.8, 9.1 wt. %) and were analyzed towards morphology, flux performance and nutrients reclamation to verify the potential for reclamation of nutrient from kenaf retted wastewater (KRW). It is observed that the NaCl rejection was increased, while membrane flux was decreased with the increase in PSF concentration. Results from modified membrane using PVP at different concentration obtained the inconsistent water flux results. These experimental results suggest that the modified PSF ultrafiltration membrane which is added of 1.5 wt. % PVP together with 14.8 wt. % PSF/ 83.7 wt. % DMAC has high flux, obtained close to 50% NaCl rejection and it successfully rejects the solute solution with molecular weight 100 kDa in 90%. This membrane also has high resistance to pressure 5 bar in 180 minutes. PVP_{1.5} was efficiently reclaiming more than 90% of total nitrogen (TN), near to 90% of total phosphorus (TP), above 85% of potassium (K) from KRW. The finding obtained indicated that modified membrane has a successful potential for nutrients reclamation of kenaf retted wastewater.

ACKNOWLEDGEMENT

In the name of Allah, the Most Merciful and the Most Compassionate.

I would like to express my deepest gratitude to the Almighty God, because for His blessings I am able to complete my studies in Universiti Teknologi MARA (UiTM) and peace upon the prophet Muhammad (s.a.w) and his companions (r.a).

Every challenging work needs self efforts as well as guidance of elders, especially those who were very close to our heart. My humble effort I dedicate this thesis to, My beloved father, Abdul Halim Ishak, my lovely mother, , my cute sister Nurul Hanis Abdul Halim with his smart husband Rahimi Mohd Ariff, my handsome nephew Ahmad Raihan Rahimi and to my future children whose affection, prays of day and night, always there for me through my up and downs and also a source of my inspirations, moral support and financial support during the completion of my studies. To my amazing husband, Mohd Soffie Mansor, who sacrificial cares for me, stood behind me all the time and was there when I needed someone to talk to. Their love, support and encouragement in the last few years were the driving force in helping me achieve my goals and fulfil the requirements of my degree. All these words are not expensive enough to buy all their kindness.

My sincere gratitude and special thanks go to my supervisor, Assoc. Prof. Dr. Ramlah Mohd. Tajuddin and my co-supervisor, Prof. Dr. Zakiah Ahmad for their invaluable guidance, advice, patience and tremendous support in providing their golden time to help throughout of my studies. Their continuous guidance and encouragement during the time of my graduate study are highly appreciated.

Not to forget is all lectures and staffs of Faculty of Civil Engineering, Universiti Teknologi MARA Shah Alam especially Mr. Norull Hilmi and Mr. Hazri Othman for their assisting and cooperation during laboratory work. The time that I have spent during the study will remain as our precious memories together and thanks for all new things that I have been experiencing.

Last but not least, to my dearest friends, Zulhilmie, Mdm. Aisyah, Mdm. Sharifah, Shamila, Mimie, Mun, Nawa, Hafiz, Azwan, Razif, Aini, Mastura, Efy, Nora, Izza, Fais, Azraie, Nikmah, Iza, Nazrin, Mimie, Teha, Arihan, Kina, Pat, Akmalina, Adawiyah, Arman, Firdaus, Ms Min and Ms Aida, whose deserves a very special mention here and thank you for the support, friendship, patience, understanding, sharing your knowledge, and make this studies really enjoy.

Although the master time is difficult, it taught me to know the real life. Learn to appreciate what you have even if you only have one Ringgit in your pocket. Learn to help others even when you are in difficulty. Learn that no matter great you are does not mean that you will get a beautiful job, or infinity money, but it teaches you to prepare ourselves for the hereafter. Everything comes from Allah, the Almighty God.

TABLE OF CONTENT

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF PLATES	xii
LIST OF EQUATIONS	xiv
LIST OF SYMBOLS	xv
LIST OF ABBREVIATIONS	xvi

CHAPTER ONE: INTRODUCTION

1.1 Background of Study	1
1.2 Problem Statement	5
1.3 Objectives of Study	7
1.4 Scope of Study	8
1.5 Limitation of Study	8
1.6 Significance of Study	9

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction	10
2.2 Introduction of Membrane Technology in Wastewater Treatment	10
2.2.1 Types of Membrane	11
2.2.2 Membrane Separation Process	13
2.2.3 Advantages of Membrane Process	16
2.3 Ultrafiltration Membrane	18
2.3.1 History of Ultrafiltration Membrane	19
2.3.2 Fundamental of Ultrafiltration Membrane	20

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

Kenaf planting has been increased around the world due to its high biomass yield and the raised fiber content (Hossain, Hanafi, Talib, & Jol, 2010). As reported Utusan Malaysia (2012) total of 10 hectares of land in Malaysia is used for the cultivation of kenaf per season. Kenaf (*Hibiscus cannabinus L.*) has been identified as a new commodity crop also known as 'New Sources of Growth in Malaysia'. Kenaf have received high attention among researcher and manufacturer as a cheap, biodegradable, environmental friendly, high tensile strength and high prices in the international market (Hadi, Basri, Abdu, Junejo, & Hamid, 2014). The products that are manufactured from the kenaf fiber served as bio-composite materials such as, paper, particle boards of various densities, textiles, ropes, nets, brushes, mats and carpets, recycled plastic, as well as automotive products (Juliana, Paridah, Rahim, Nor Azowa, & Anwar, 2012; Webber & Bledsoe, 1993).

However, the rapid development of kenaf industry has caused environmental issue through their retting process due to it takes about one to two weeks to be completed (Mahmudin et al., 2012). This process is the main challenge faced during the processing of bast kenaf plants. A quality of fibre is largely determined by the retting condition and duration (Paridah & Khalina, 2009). Retting can be defined as loosening or separation process of bast fibres into individual fibres (Zawani, Chuah-Abdullah, Ahmadun, & Abdan, 2013). It can be done in several ways like microbe, enzyme, dew, water and chemical (Banik, Sen, & Sen, 1993; Henriksson, Akin, Slomczynski, & Eriksson, 1999; Akin et al., 2007; Chen, Wang, Hua, & Du, 2007; Sharma, 1987).

Water retting process had been identified to be the best method for fiber extraction that was practiced in most producing countries such as China, India and Bangladesh. Water retting is a wet process whereby fibrous plants were soaked in water which will enable the separation of outer layers of stalk from non-fibrous matter by removal of pectin and other gummy substances (Nabilah Huda, Ramlah, Zakiah, &