UNIVERSITI TEKNOLOGI MARA

PHYSICAL AND ELECTROCHEMICAL STUDIES ON NANOCOMPOSITE -30 % PMMA-g-NATURAL RUBBER (MG30)

NURUL ILHAM BINTI ADAM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

June 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurul Ilham Binti Adam
Student I.D. No.	:	2009990927
Programme	:	Master of Science (AS780)
Faculty	:	Faculty of Applied Sciences
Thesis Title	:	Physical and Electrochemical Studies On Nanocomposite – 30 % PMMA-g-Natural Rubber (MG30)
Signature of Student	:	······································
Date	:	June 2013

ABSTRACT

This thesis focuses on the effect of nanofillers on the physical and electrochemical properties of polymer electrolytes. 30% PMMA-g-natural rubber (MG30) is doped with lithium triflate (LiTf) salt and composited with silicon dioxide (SiO₂) or aluminum oxide (Al₂O₃) nanofiller. The conductivity of the samples is measured by impedance spectroscopy (IS) and shows a substantial increase in conductivity with the addition of lithium salt up to 35 wt. % after which, at higher salt loading (> 35 wt.%) the conductivity seem to decrease. The optimum composition of MG30-LiTf salt complexes sample with highest conductivity is then separately composited with different concentrations of SiO₂ or Al₂O₃ filler. The addition of filler demonstrates a significant increase in conductivity by one order higher ($\sim 10^{-4}$ Scm⁻¹) to that of uncomposited samples. FTIR spectral analysis shows the complexation takes place between polymer and salt. The shifting of C=O vibration mode to lower wavenumber prove the $Li^+ \rightarrow O=C$ interaction. X-ray diffraction (XRD) spectral studies shows the composited film exhibit most amorphous. Higher degree of amorphousness of the samples is well agreed with the surface morphology analysis that is the sample with addition of filler displayed most miscible with reduces in glass transition temperature (T_{g}) . These effects are associated to the conductivity and the increasing in conductivity value is due to the increasing of the segmental chain flexibility that occurs mainly in the amorphous domain.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATIONS	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	ix
LIST OF TABLES	x
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Problem Identification	2
1.3	Objectives of the Research	2
1.4	Scope of the Thesis	3

CHAPTER TWO: LITERATURE REVIEW

2.1	Introd	uction	4	
2.2	Polym	Polymer Electrolytes		
	2.2.1	Solid Polymer Electrolyte (SPE)	5	
	2.2.2	Gel Polymer Electrolyte (GPE)	6	
	2.2.3	Composite Polymer Electrolyte (CPE)	7	
2.3	Electrical Properties of Polymer Electrolytes		8	
	2.3.1	Impedance Studies	8	
2.4	Ionic	Conduction Mechanism in Polymer Electrolyte	10	
	2.4.1	Arrhenius Model	11	
	2.4.2	Vogel-Tamman-Fulcher (VTF) Model	12	
2.5	Criter	ia Selection of Polymer and Salt	14	
2.6	Techniques to Improve Ionic Conductivity		15	
	2.6.1	Mixed Salt System	15	

	2.6.2 Addition of Plasticizer	16
	2.6.3 Addition of Inorganic Filler	16
2.7	Selection of Polymer Host	19
2.8	Natural Rubber	20
	2.8.1 Modified Natural Rubber	20
	2.8.2 30 % PMMA-G-Natural Rubber or MG30	21
	2.8.3 Lithium Triflate (LiCF ₃ SO ₃)	22
	2.8.4 Silicon Oxide (SiO ₂) and Aluminum Oxide (AI ₂ O ₃)	22
	as Nanofiller	

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Introdu	iction	23
3.2	Prepara	ation of Samples	23
	3.2.1	Preparation of Solid Polymer electrolyte (PE)	24
	3.2.2	Preparation of Composite Polymer electrolyte (CPE)	25
3.3	Sample Characterization		
	3.3.1	Fourier transform infrared (FTIR) spectroscopy -FTIR	28
	3.3.2	X-ray Diffraction (XRD)	28
	3.3.3	Field Emission Scanning Electron Microscopic (FESEM)	29
	3.3.4	Differential Scanning Calorimetric (DSC)	29
		and Thermogravimetric Analysis (TGA)	
	3.3.5	Impedance Spectroscopy (IS)	30
	3.3.6	Linear Sweep Voltammetry (LSV)	32
CHAPT	ER FO	UR: PHYSICAL CHARACTERIZATION	
4.1	Introdu	uction	33

4.2	FTIR Spectroscopic Studies	33
4.3	FTIR studies of MG30-LiTf system	37
4.4	FTIR studies of Composite Polymer electrolyte System	41
4.5	XRD Analysis of MG30 and Lithium Triflate system	45
4.6	XRD Analysis of Composite Polymer Electrolytes	45
4.7	Field Emission Scanning electron microscope (FESEM)	48
4.8	FESEM study for MG30,MG30+LiTf and Composite MG30-	48