UNIVERSITI TEKNOLOGI MARA

SYNTHESIS AND ELECTROCHEMICAL PERFORMANCE OF SOLID SOLUTION OF LAYERED NANOSTRUCTURED LiCo_{1-x}Ni_xO₂ (x = 0.0, 0.1, ..., 0.9)

KELIMAH ANAK ELONG

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

August 2013

AUTHOR'S DECLARATION

I declare that work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Kelimah anak Elong
Student I.D. No.	:	2010613656
Programme	:	Master of Science (Nano Materials)
Faculty	:	Faculty of Applied Sciences
Tittle	:	Synthesis and electrochemical performance of
		layered nanostructured $LiCo_{1-x}Ni_xO_2$ (x = 0.0, 0.1,
		, 0.9)

Signature of Student	:	B
Date	:	August 2013

ABSTRACT

Layered compounds are being investigated extensively due to their high theoretical specific capacities and relatively good cyclability. Lithium cobalt oxide (LiCoO₂) is an excellent cathode material but expensive and not abundant in nature. LiNiO₂, however, is unstable and do not exhibit good electrochemical properties. Substitution of nickel with cobalt may minimize the cobalt content and may reduce production cost. In this work, layered LiCo_{1-x}Ni_xO₂ (x = 0.0, 0.1, ..., 0.9) via a novel self-propagating combustion electrochemical properties are investigated. synthesis and its Simultaneous Thermogravimetric Analysis (STA), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy and High Resolution Transmission Electron Microscopy (HRTEM) were used to characterize all the materials. The characterization of all samples shows pure and single phase layered hexagonal structured materials obtained at 700 °C for 24 h with a polyhedral like morphology. The EDX results give the atomic percent for each sample and agreeable to calculated synthesized values. From cyclic voltammetry, the maximum voltage can reached up to 5.0 V and minimum voltage is 2.3 V. The LiCo_{1-x}Ni_xO₂ materials show good promise as cathode materials. The material LiCo_{0.6}Ni_{0.4}O₂ has the best specific capacity of 165 mAh/g in the first cycle. The five materials of $LiCo_{1-x}Ni_xO_2$ (x = 0.3, 0.4, 0.5, 0.6, 0.7) exhibit high specific capacities but their energy densities are a little lower than that of $LiCoO_2$ due to the slightly slopping discharge plateaus of the materials.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiii

CHAPTER ONE: INTRODUCTION

1.1	Background of the Research	1
1.2	Problem Statement	2
1.3	Significance Of Study	3
1.4	Objectives	4
1.5	Scopes And Limitation Of The Research	4

CHAPTER TWO: LITERATURE REVIEW

2.1	Classification Of Batteries	5
	2.1.1 Primary Batteries	5
	2.1.2 Secondary Batteries	6
2.2	Lithium-Ion Batteries	8
2.3	Principle Operation Of Lithium-Ion Batteries	9
2.4	Cathode Materials With Layered Structure	10
	2.4.1 Lithium Cobalt Oxides (LiCoO ₂)	10
	2.4.2 Lithium Nickel Oxides (LiNiO ₂)	12
	2.4.3 Lithium Cobalt Nickel Oxide ($LiCo_{1-x}Ni_xO_2$)	13
2.5	Anode Materials	18
2.6	Electrolyte	19
2.7	Separator	20
2.8	Synthesis Method	21

2.8.1 Self-Propagating Combustion Method	21
2.8.2 Solid State Reaction Method	22
2.8.1 Sol-gel Method	22

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Synth	esis Method and Preparation of Samples	23
3.2	Mate	rials Characterization	25
	3.2.1	Simultaneous Thermogravimetric Analysis (STA)	25
	3.2.2	X-Ray Diffraction (XRD)	27
	3.2.3	Field Emission Scanning Electron Microscopy (FESEM)	30
	3.2.4	Energy Dispersive X-Ray Spectroscopy (EDX)	31
	3.2.5	High Resolution Transmission Electron Microscopy (HRTEM)	32
3.3.	ELEC	CTROCHEMICAL TESTING	35
	3.3.1	Cyclic Voltammetry (CV)	35
	3.3.2	Battery Fabrication	38
	3.3.3	Battery Testing	38

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Simultaneous Thermogravimetric Analysis (STA)	40
4.2	X-Ray Diffraction (XRD)	49
4.3	Field Emission Scanning Electron Microscopy (FESEM)	61
4.4	Energy Dispersive X-Ray Spectroscopy (EDX)	67
4.5	High Resolution Transmission Electron Microscopy (HRTEM)	72
4.6	Cyclic Voltammetry (CV)	76
4.7	Battery Characterization	78

CHAPTER FIVE: CONCLUSION

5.1	Conclusion	93

CHAPTER SIX: SUGGESTION FOR FUTURE WORK

6.1 Suggestion	
----------------	--

94