UNIVERSITI TEKNOLOGI MARA

SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE SILICON THIN FILMS ON TEFLON SUBSTRATES BY RF MAGNETRON SPUTTERING

NORHIDAYATUL HIKMEE BINTI MAHZAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

April 2015

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Norhidayatul Hikmee Binti Mahzan
Student I.D No	;	2010515175
Programme	:	Master of Science – Electronic (EE780)
Faculty	:	Faculty of Electrical Engineering
Thesis Title	:	Synthesis and characterization of nanocrystalline silicon thin films on Teflon substrates by RF magnetron sputtering

Signature of Student

manner

Date

April 2015

:

:

ABSTRACT

Studies on the growth of nanocrystalline silicon (nc-Si) on teflon substrate are being studied. The preparation was done by using direct deposition of Radiofrequency (RF) magnetron sputtering method. The physical and crystallinity of thin films was studied and investigated to focus on various deposition parameters such as RF power, deposition temperature, sputtering pressure and argon gas flow rate. The physical structures of the thin films were observed by using field emission scanning electron microscope (FESEM), JOEL JSM 7600F and Surface Profiler (SP, KLA Tencor P-6). The crystallinity of the thin films was observed by Raman spectroscopy (Horiba Jobin Yvon). Through the investigation, we found that at room temperature, the deposited thin film was amorphous, however, crystallization started to occur when the substrate was heated, resulting that the deposited thin films are nc-Si thin films. The film thickness and the deposition rate increased with a substrate temperature except for the room temperature deposition. The grains seemed to be more dense for the deposition at higher temperature compared to the lower temperature. We also found that the thickness of thin films increased with increased RF power and deposition temperature. Raman spectroscopy results is shown that, with increasing RF power and deposition temperature can cause the changing of crystallinity on both glass and teflon substrate. From optimization result, the nc-Si thin films deposited at RF power 200 W, deposition temperatures 150 °C, sputtering pressure 7 mTorr and 40 sccm Ar gas flow rate, which gives the highest crystallinity based on Raman shift results compared to others thin films. In this thesis we also studied on the resistive switching on the nc-Si sub-oxide for memristive device applications.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiii

CHAPTER ONE: INTRODUCTION

1.1	Research Motivation	1
1.2	Si Thin Film	2
1.3	Resistive Switching of Si Thin Films	3
1.4	Problem Statement	4
1.5	Hypotheses	5
1.6	Objective of the Research	5
1.7	Scope of Work	5
1.8	Thesis Organization	6

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction of Si	
2.2	Thin Film Silicon	8
	2.2.1 Amorphous Silicon (a-Si)	8
	2.2.2 Polycrystalline Silicon (poly-Si)	9
	2.2.3 Nanocrystalline Silicon (nc-Si)	10
2.3	Thin Film Deposition in General	
	2.3.1 Chemical Vapor Deposition (CVD) Method	11
	2.3.2 RF Magnetron Sputtering Method	13
2.4	Application of nc-Si	16
		v

2.5	Resistive Switching and Device		
	2.5.1	Introduction of Memristor	17
	2.5.2	Memristive Behavior	19
2.6	Chapte	er Summary	22

CHAPTER THREE: METHODOLOGY

24

3.1	Introd	luction	24
3.2	Clean	ing Substrate	25
	3.2.1	Teflon Substrate Cleaning	25
3.3	Depos	sition of nc-Si Film and Fabrication of Memristive Device	26
	3.3.1	RF Magnetron Sputtering	26
		3.3.1.1 Sputtering System	27
	3.3.2	Deposition Parameters	29
		3.3.2.1 RF Power	29
		3.3.2.2 Deposition Temperature	29
		3.3.2.3 Sputtering Pressure	29
		3.3.2.4 Ar Gas flow rate	29
	3.3.3	Fabrication of Memristive Device	30
	3.3.4	Characterization Method	31
		3.3.4.1 Thickness of Thin Film	32
		3.3.4.2 Crystallinity	33
		3.3.4.3 Structural Properties	36
		3.3.4.4 Optical Properties	38
	3.3.5	Electrical Properties	38
	3.3.6	Hall Effect Measurement	40
	3.3.7	Memristive I-V Characteristic	41
3.4	Chapt	ter Summary	43

CHAPTER FOUR: GROWTH OF NANOCRYSTALLINE SILICON THIN FILMS FABRICATION OF NC-SIO_X MEMRISTIVE DEVICES

4.1	Introduction	44
4.2	Effect of Sputtering Condition by RF Magnetron Sputtering	44
		vi