UNIVERSITI TEKNOLOGI MARA

STEEL BOX GIRDER WITH PROFILED WEBS

YASMIN SARI BINTI NURSAL

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Civil Engineering

October 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Yasmin Sari Binti Nursal
Student I.D. No.	;	2007149569
Programme	:	Master in Science
Faculty	:	Faculty of Civil Engineering
Title	:	Steel Box Girder with Profiled Webs
Signature of Student	:	ET ET
Date		October 2013

ABSTRACT

Rotation capacities obtained by a steel box girder with flat webs compare to the equivalent steel box girders with profiled webs are different. One of the objectives of the research presented in this thesis is to investigate if there is any improvement of plastic section rotation capacities steel box girder with profiled webs. All the tested specimens were loaded under four point bending. Three dimensional (3D) computer models analysed using the finite element method were used throughout the study. Results from pre-existing experimental work for I- section steel girder were used to validate the results obtained from the finite element analysis. Consequently, establishment of steel box girders were made and then validated with the classical beam theory. Failure mode of steel box girders with profiled webs starts with yielding followed by local buckling of the compression flanges. Incline folds in profiled webs at the compression area are able to cope with higher stresses as compared to horizontal folds. Rotation capacity percentage increament of steel box girder with flat webs as compared to the equivalent steel box girders with profiled webs was about 99.55% with 0.16 standard deviation. The increment is about, double the rotation capacity of a girder with flat webs to the girder with profiled webs. Hence, the contribution from webs was significant to the rotation capacity. Rotation capacities increase significantly as the flange thickness and web thickness increase. While, as the yield stress, flange internal element width and flange external element width of steel plate box girders with the profiled webs are increased, the rotation capacities experience reduction.

TABLE OF CONTENTS

Page

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xix

CHAPTER ONE : INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Work	4
1.5	Limitation of Study	4
1.6	Significance of Study	4

CHAPTER TWO : REVIEW OF LITERATURE

2.1	Introduction	6
2.2	Steel Girder	7
2.3	Box Welded Girder	10
	2.3.1 Box Welded Girder with Plane Webs	10
	2.3.2 Box Welded Girder with Profiled Webs	12
2.4	Ductility Definition	14
	2.4.1 Ductility for Plastic Design	14
	2.4.2 Ductility of Box Section	15

2.5	Local Buckling and Slenderness Limit		15
	2.5.1	Plate Buckling Analysis	16
	2.5.2	Uniaxial Uniform Compression Element Supported	22
		on One Edge Plates	
	2.5.3	Uniaxial Uniform Compression Element Supported	23
		on Both Edges	
	2.5.4	Uniaxial Uniform Bending Element Supported	25
		on Both Edges	
2.6	Section	n Classification Definition	26
	2.6.1	Plastic Section (Class 1)	27
	2.6.2	Compact Section (Class 2)	27
	2.6.3	Semi Compact Section (Class 3)	27
	2.6.4	Slender Section (Class 4)	28
2.7	Producing Section Classification Limits		28
	2.7.1	Understanding on Plastic Design	28
	2.7.2	Basic Plastic Analysis	29
	2.7.3	Moment-Curvature (M-k) Relationships for Beams and/or Girder	32
	2.7.4	Rotation Capacity	33
	2.7.5	Requirement of Rotation Capacity	35
2.8	Resear	rches on Profiled Web Girders	37
2.9	Researches on Bending of Profiled Web Girders		39
2.10	Finite	Element Study	42
	2.10.1	Geometric and Material Non-Linearity	43
	2.10.2	Initial Geometric Imperfection	45
2.11	Resea	rches on Ductility of Girders	48
2.12	Concl	uding Remarks	50

CHAPTER THREE : METHODOLOGY

3.1	Introduction	51
3.2	Research Design	51