UNIVERSITI TEKNOLOGI MARA

INFLUENCE OF SOAKING FOR EXTRACTION OF ESSENTIAL OIL FROM AGARWOOD (AQUILARIA MALACCENSIS)

NOR FAZILA BINTI KHAIRUDIN

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Chemical Engineering

September 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student	:	Nor Fazila binti Khairudin
Student I.D No	:	2009508663
Programme	:	Master of Science
Faculty	t i	Faculty of Chemical Engineering
Title	:	Influence of Soaking For Extraction of Essential Oil from Agarwood (Aquilaria Malaccensis)
Signature		
Date	÷	September 2013

ABSTRACT

Nowadays, high demands in agarwood oil makes Malaysian are actively involved in agarwood plantation and production of agarwood oil. Most of previous publications focused only on the extraction of chemical compounds from agarwood but there is still lacking in the pre-treatment part. Pre-treatment like soaking could break the parenchyma cells, hence facilitate the oil glands to rupture. Therefore, the main goal of this research is to investigate the effect of soaking to the agarwood structure, volatilization temperature of essential oil and chemical components extracted using various techniques and solvents. Furthermore, the effect of temperature and extraction time on agarwood oil yield produced from pressurized steam distillation also studied using RSM. The investigations on agarwood chips and oil were carried out using TGA, SEM and GC-MS. In this research agarwood was soaked in three different solvent such as sulphuric acid, lactic acid and water. Works done in this research identified, agarwood soaked in lactic acid showed the volatilization temperature of agarwood oil at temperature ranges of 110 to 200 °C and produces the biggest rupture. This sample also revealed the highest numbers of compounds in the immersion solvent. Furthermore, this research proved that different agarwood oil components were obtained via different extraction and pre-treatment techniques. Most components extracted using hexane is group terpene hydrocarbon, meanwhile oxygenated hydrocarbon components were observed in agarwood oils extracted via ethanol and methanol. In investigation of PSD, the highest yield was obtained by agarwood soaked in lactic acid at 103 °C for 11 hours, then followed by agarwood soaked in sulphuric acid and water at 118 °C for 4 hours and 110 °C for 11 hours respectively. Non-soaked agarwood recorded the lowest oil yield when the sample exposed to 107 °C for 12 hours of extraction process.

TABLE OF CONTENTS

Page

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENT	v
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF PLATES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xv

CHAPTER ONE: INTRODUCTION

1.1	Research Background	4
1.2	Problem Statement	2
1.3	Objectives of Research	3
1.4	Scopes of Research	4
1.5	Limitations of Research	4
1.6	Significances of Research	5
1.7	Thesis Outline	6

CHAPTER TWO: LITERATURE REVIEW

2.1	Agarwood Tree	7
2.2	Essential Oils	8
2.3	Morphology of Agarwood	8
2.4	Chemical Components of Agarwood Oil	11
2.5	Market and Uses of Agarwood	13
	2.5.1 Market of Agarwood	13
	2.5.2 Uses of Agarwood	14
	2.5.2.1 Prospect in Pharmaceutical	14

	2.5.2.2 Prospect in Perfumery	14	
	2.5.2.3 Prospect in Incense	15	
2.6	Soaking Technique	15	
2.7	Extraction of Agarwood Oil	17	
	2.7.1 Distillation	23	
	2.7.1.1 Hydro-Distillation in Malaysia Scenario	24	
	2.7.1.1.1 Principles of Hydro Distillation	24	
	2.7.1.1.2 Advantages and Disadvantages of		
	Hydro Distillation	25	
	2.7.1.2 Steam Distillation	27	
	2.7.1.2.1 Principles of Steam Distillation	27	
	2.7.1.2.2 Advantages and Disadvantages of Steam Distillation	29	
	2.7.2 Solvent Extraction	29	
	2.7.2.1 Principles of Solvent Extraction	30	
	2.7.2.2 Advantages and Disadvantages of Solvent Extraction	30	
	2.7.2.3 Solvent Choice for Solvent Extraction	31	
	2.7.3 Supercritical Fluid Extraction	32	
	2.7.3.1 Principles of SFE	33	
	2.7.3.2 Advantages and Disadvantages of SFE	34	
	2.7.4 Pressurized Steam Distillation	35	
	2.7.4.1 Principles of PSD	35	
	2.7.4.2 Advantages and Disadvantages of PSD	36	
2.8	Analysis Tools	37	
	2.8.1 Thermogravimetric analysis (TGA)	37	
	2.8.1.1 Principles of thermal analysis	38	
	2.8.1.2 Applications of TGA	38	
	2.8.2 Scanning electron microscopy (SEM)	40	
	2.8.2.1 Principles of SEM	40	
	2.8.2.2 Applications of SEM	42	
	2.8.3 Gas Chromatography Mass Spectrum (GC-MS)	42	
	2.8.3.1 Sample Preparation of GC-MS	42	
			vi