UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF METAL MOUNTABLE RFID TAG ANTENNA IN ULTRA HIGH FREQUENCY RANGE

NAJWA BINTI MOHD FAUDZI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

March 2015

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledge as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

:

:

:

:

:

:

Name of Student Student I. D. No. Programme Faculty Thesis Title Najwa binti Mohd Faudzi 2012680754 Master of Science (EE780)

Electrical Engineering

Development of Metal Mountable RFID Tag Antenna in Ultra High Frequency Range

Signature of Student Date

. March 2015

ABSTRACT

In recent years, Radio Frequency Identification (RFID) technology is highly demanded in various applications, requiring a rapid development in the RFID technology. The performance of the RFID system mainly depends on the RFID tag, as the tag will be attached on the items or objects that need to be identified. The research described in this thesis focuses on the development of the tag antenna designs to meet the requirements of certain applications which are small size and insensitive to metal object. In this project, three designs of UHF-RFID tag antenna were proposed; namely a compact dipole tag antenna, metal mountable meander feed line tag antenna and metal mountable ladder feed line tag antenna. The Design 1 tag antenna has obtained a size reduction of 70% from the straight half wavelength dipole antenna through the implementation of two miniaturization methods, which are meandering and capacitive tip-loading. However, high sensitivity of the tag to the metal objects attached leads to the formation of the Design 2 tag antenna, which included a ground plane in the antenna structure. The Design 2 tag antenna was then improved to the Design 3 tag antenna, which has smaller size and better reading range, through the implementation of capacitive tip-loading structure and ladder feed line respectively. In order to easily match the impedance of the antenna with the chip, a T-matching technique has been inserted in all three tag antenna designs. The simulation process was carried out using CST Studio Suite software, while the measurement of S11, antenna impedance and reading range was done using fabricated jig, Image method, Vector Network Analyzer and RFID reader. From measurement, the Design 1 tag antenna has achieved the longest reading range in free air with the value of 9.6 m, but failed to be detected when attached on metal object. In contrast, Design 2 and Design 3 tag antennas can be detected in both conditions with the read range value of 2.2 m and 2.3 m in free air, while on metal object the read range is 2.0 m and 2.2 m respectively.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii		
AUTHOR'S DECLARATION	iii		
ABSTRACT	iv		
ACKOWLEDGMENT	v		
TABLE OF CONTENTS LIST OF TABLES LIST OF SYMBOLS			
		LIST OF ABBREVIATIONS	xviii
CHAPTER ONE: INTRODUCTION	1		
1.1 Research Background	1		
1.2 Problem Statement	2		
1.3 Research Objectives	3		
1.4 Scope of Project	4		
1.5 Project Organization	5		
CHAPTER TWO: FUNDAMENTAL OF RFID TECHNOLOGY	6		
2.1 Introduction	6		
2.2 RFID Technology	7		
2.2.1 RFID Components	7		
2.2.2 Operating Frequency	9		
2.2.3 Operation Principle of RFID	11		
2.2.3.1 Near-field RFID	11		
2.2.3.2 Far-field RFID	11		
2.2.4 RFID Tag Performance Characteristics	13		
2.3 UHF-RFID Tag Antenna	15		
2.3.1 Basic Antenna Theory	15		
2.3.1.1 Radiation Pattern	15		

	2.3.1.2 Bandwidth	16
	2.3.1.3 Gain and Directivity	17
	2.3.1.4 Antenna Efficiency	18
	2.3.1.5 Antenna Feed Impedance	18
	2.3.2 Dipole Antenna	19
	2.3.3 Printed Dipole Antenna	20
	2.3.4 Microstrip Dipole Antenna	22
	2.3.5 Tag Antenna with Miniaturization Techniques	25
	2.3.6 Tag Antenna with Impedance Matching Techniques	29
	2.3.7 Tag Antenna on Metal Object	32
2.4	Conclusion	35
СН	APTER THREE: METHODS OF DESIGNING RFID TAG	36
AN	TENNA	
3.1	Introduction	36
3.2	Flow Chart	37
3.3	UHF-RFID Tag Specification	38
3.4	Miniaturization and Matching Concept	38
	3.4.1 Meandering	38
	3.4.2 Capacitive Tip-Loading	42
	3.4.3 T-Match	43
3.5	Simulation and Measurement Tool	45
	3.5.1 CST Studio Suite	46
	3.5.2 Vector Network Analyzer (VNA)	47
	3.5.3 Balun – DK7ZB Match	48
	3.5.4 Construction of Jig	50
	3.5.4.1 Jig with 50 Ω Coaxial Cable (SOT1040 chip)	50
	3.5.4.2 Jig with 75 Ω Coaxial Cable (SOT1122 chip)	54
3.6	RFID Measurement Setup	57
	3.6.1 Read Range	57
	3.6.2 Reflection Coefficient, S ₁₁	58
	3.6.3 Antenna Impedance	59
3.7	Conclusion	61