UNIVERSITI TEKNOLOGI MARA

UNIT COMMITMENT IN POWER SYSTEM USING MULTI-AGENT EVOLUTIONARY PROGRAMMING INCORPORATING PRIORITY LISTING OPTIMISATION TECHNIQUE

MUHAMMAD NAZREE BIN CHE OTHMAN

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

April 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledge as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Muhammad Nazree Bin Che Othman
Student I.D. No.	:	2009840114
Programme	:	Master of Science
Faculty	:	Faculty of Electrical Engineering
Title	:	Unit Commitment in Power System Using Multi-agent
		Evolutionary Programming Incorporating Priority
		Listing Optimisation Technique.

0

Signature of Student :

Date

April 2013

:

ii

ABSTRACT

Escalating cost of electrical energy generation becomes one of the major issues faced by almost all electrical power producers around the globe. High price of fuel, generating unit unavailability, fix loaded requirement, the must run generators, maximum or minimum power capacity or even generating units derated capacity are factors that influenced this cost increase. Most of generating units are restricted to its scheduled interchange with sufficient operating reserve and regulating margin in order to prepare the power system operation for emergency response. Furthermore, the time variance of the demand for electricity has increased the complexity in ensuring the request is satisfied while the costs of generation is minimised. As demands for electricity grows from time to time, power systems become larger and more complex, which, lead to the issues of high operation cost and resulting long computational time for the execution process. In power system operation and planning study, the main platform in discussing this issue is referred as unit commitment (UC) problem. This research presents an approach to solve the UC problem using a newly developed Multi-agent Evolutionary Programming incorporating Priority Listing optimisation technique (MAEP-PL). The objective of this study is to search for generation scheduling such that the total operating cost can be minimised when subjected to a variety of constraints, while at the same time reducing its computational time. The proposed technique assimilates the concepts of Priority Listing (PL), multi-agent system (MAS) and Evolutionary Programming (EP) as its basis. In the proposed technique, deterministic PL technique was first applied to produce a population of initial solutions. The search process then being refined using heuristic EP-based algorithm with multi-agent approach to produce the final solution. The developed technique was tested on the 10 generating units test system then up to 20 generating units in a 24-hours scheduling period and the results was compared with the basic EP, Evolutionary Programming with Priority Listing (EP-PL) and Multi-agent Evolutionary Programming (MAEP) optimisation techniques. From the result obtained and the comparative study conducted, it is proved that the proposed MAEP-PL optimisation technique has able to solve the unit commitment problem where, the total daily generation cost is effectively minimised and the computation time is reduced as compared to other techniques.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	х

CHAPTER ONE: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	2
1.3	Research Objectives	4
1.4	Scope of Research	4
1.5	Significant of the Research	6
1.6	Organization of Thesis	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Introd	uction	9
2.2	Unit C	Commitment Problem	9
	2.2.1	On-off State and Unit Commitment Economic Dispatch	11
2.3	Deterr	ninistic Optimization Techniques	11
	2.3.1	Dynamic Programming	12
	2.3.2	Lagrange Relaxation	12
	2.3.3	Branch and Bound	13
	2.3.4	Mixed Integer Programming	14
	2.3.5	Priority Listing	15

2.4	Evolution Algorithm Optimization Techniques		16
	2.4.1	Evolutionary Programming	17
	2.4.2	Applications of Evolutionary Programming	17
2.5	Multi-a	agent System	18
2.6	Chapte	er Conclusion	19

CHAPTER THREE: METHODOLOGY

3.1	Introd	duction		
3.2	Resear	Research Methodology		
	3.2.1	Knowledge Acquisition and Background Studies	21	
	3.2.2	Design of Algorithm	22	
	3.2.3	Construction and Execution	24	
	3.2.4	Experimentation and Observation	24	
	3.2.5	Evaluation and Analysis	25	
3.3	Mode	lling the Unit Commitment Problem	25	
	3.3.1	On-off State of Generator	25	
	3.3.2	Unit Commitment Economic Dispatch (UC-ED)	26	
	3.3.3	Unit Commitment Objective Function	26	
	3.3.4	System Requirement and Generating Unit Constraints	28	
		i Generating Unit Capability Limit Constraint	28	
		ii Power Balance Constraint	29	
		iii Spinning Reserve Constraint	29	
		iv Generating Unit Minimum On-time Constraint	29	
		v Generating Unit Minimum Off-time Constraint	30	
		vi Fuel Constraint	30	
		vii Crew Constraint	30	
		viii Must-run Unit/s Constraint	30	
	3.3.5	Data Specification	31	