UNIVERSITI TEKNOLOGI MARA

FUSION OF LICENSE PLATE AND FACE RECOGNITION FOR SECURE PARKING

SITI SALWA BINTI MD NOOR

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

September 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Siti Salwa Binti Md Noor
Student I.D. No.	:	2009575251
Programme	;	Master of Science
Faculty	:	Electrical Engineering
Thesis Title	:	Fusion of License Plate and Face Recognition for Secure Parking
Signature of Student	:	ja j
Date	:	September 2013

ABSTRACT

Integration of multimodal biometrics is one of the well known techniques for security enhancement. Hence, in this research the integration of car plate and face recognition as security enhancement in private parking area has been developed to ensure the car is driven by the authorized or registered owner. The methodology proposed is based on algorithms tested for feature extraction of plate and face recognition based on unconstrained minimum average correlation energy (UMACE) filter. Then, cryptosystem algorithm based on Hill Cipher and random number is implemented as encryption and decryption techniques as protection for registered users as stored in the database. The accuracy rate attained is based on implementation of decision fusion using AND rule during classification. Experiments attained a total success rate (TSR) of 96% during parking based on plate recognition only and over 99% TSR during exit based on fusion of plate and face recognition at PSR value of 10. Results confirmed that the proposed method is indeed suitable for security measure in a parking space. Additionally, the algorithms developed in this study are also validated and verified based on three performance measures namely genuine acceptance rate (GAR) for plate as 96% based on registered car plate during exit whilst face GAR of 80% for registered owner or user to be allowed to exit. As for impostors, the rejection rate (IRR) calculated is 100% as indicator of the specificity of impostors as well as prohibiting unregistered owner or user to proceed and exit.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Scope and Limitations	4
1.5	Summary	5

CHAPTER TWO: LITERATURE REVIEW

2.1	.1 Overview of Plate Recognition		
	2.1.1	Application of Plate Recognition	6
	2.1.2	Plate Detection	7
	2.1.3	Character Segmentation	10
	2.1.4	Character Recognition	11
2.2	Overview of Face Recognition		11
	2.2.1	Application of Face Recognition	11
	2.2.2	Face Detection	12
	2.2.3	Feature Extraction	12
	2.2.4	Face Recognition System	13
2.3	Correlation Filter		13
	2.3.1	Minimum Average Correlation Energy (MACE)	13
	2.3.2	Unconstrained Minimum Average Correlation Energy (UMACE)	14

Page

2.4	Cryptosystem		14
	2.4.1	Image Encryption	15
	2.4.2	Image Decryption	16
2.5	Overview of Fusion Level		17
	2.5.1	Feature Level Fusion	17
	2.5.2	Match/Score Level Fusion	18
	2.5.3	Decision Level Fusion	18
2.6	5 Summary		19

CHAPTER THREE: METHODOLOGY FOR PLATE AND FACE RECOGNITION BASED ON UMACE

3.1	Proposed Methodology		
3.2	Plate and Face Recognition Based on UMACE		
	3.2.1	Plate Recognition Based on UMACE	28
	3.2.2	Face Recognition Based on UMACE	28
3.3	Cryptosystem Technique		29
	3.3.1	Encryption and Decryption Based on the	
		Hill Cipher Method	29
3.4	Decisio	n Fusion	30
	3.4.1	Decision Fusion at Match Level	31
3.5	Develo	pment of Graphic User Interface (GUI)	32
3.6	Performance Measure Based on Peak to Sidelobe Ratio (PSR)		
3.7	Summary 3		

CHAPTER FOUR: EXPERIMENTAL, RESULTS, ANALYSIS AND

DISCUSSION

4.1	Introduction		
4.2	Database		36
	4.2.1	Car Plate Database	36
	4.2.2	Face Database	37
4.3	B Plate Detection Result		37
4.4	UMACE Result in Plate Recognition		38
4.5	UMAC	E Result in Face Recognition	42