UNIVERSITI TEKNOLOGI MARA

ON A NEW CLASS OF *P*-VALENT FUNCTIONS OF COMPLEX ORDER INVOLVING SALAGEAN DIFFERENTIAL OPERATOR

MARDHIYAH BTE ISMAIL

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Computer and Mathematical Sciences

November 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of UniversitiTeknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree of qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, UniversitiTeknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mardhiyah bte Ismail
Student ID No.	:	2009773021
Programme	:	Master of Science (CS 780)
Faculty	:	Faculty of Computer and Mathematical Sciences
Thesis Title	:	On a New Class of <i>p</i> -valent Functions of Complex Order Involving Salagean Differential Operator
Signature of Student	:	
Date	:	November 2013

ABSTRACT

Let S be the class of univalent functions of the form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, analytic in the open unit disk $U = \{z : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0. Also let S_p denote the class of p-valent functions of the form of $f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k}$. In this thesis, a new class of p-valent function is defined

where functions in this class satisfy the condition $1 + \frac{1}{b} \left(\frac{1}{p} \frac{z(D^{\lambda} f(z))'}{D^{\lambda} f(z)} - 1 \right) \prec \frac{1 + Az}{1 + Bz}$.

 \prec denotes subordination, *b* is any non-zero complex number, *A* and *B* are the arbitrary fixed numbers, $-1 \le B < A \le 1$. $D^{\lambda} f(z)$ is the operator introduced by Shenen et al. (2004) which is the extension of Salagean operator where $D^{\lambda} f(z) = z^{p} + \sum_{k=1}^{\infty} \left(\frac{p+k}{p}\right)^{\lambda} a_{p+k} z^{p+k}$ and $\lambda \in N_{0} = \{0\} \cup N$. The properties of the new

class such as the coefficient estimates, growth and distortion theorems and radius properties are investigated. The upper bounds of the Fekete Szego functional and the upper bound of the second Hankel dererminant are also found in this thesis.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGMENTS	iv
TABLE OF CONTENTS	v
LIST OF SYMBOLS	vii

CHAPTER ONE : PRELIMINARIES ON THE THEORY OF UNIVALENT FUNCTIONS

1.1	Introduction	1
1.2	Subclasses of S	3
1.3	P-valent functions	6
1.4	Functions with Positive Real Part	6
1.5	Subordination	7
1.6	Objectives	8
1.7	Thesis outline	9

CHAPTER TWO: A SUBCLASS OF *P*-VALENT FUNCTIONS OF COMPLEX ORDER DEFINED BY SALAGEAN DIFFERENTIAL OPERATOR.

2.1	Introduction	10
2.2	Literature Review	10
2.3	The Class $S_{\rho}^{\lambda}(A,B,b)$	14
2.4	Coefficient Estimates	15
2.5	Growth and Distortion Theorems	22
2.6	Radius of Close-to-Convexity, Starlikeness and Convexity	26

CHAPTER THREE : FEKETE SZEGÖ PROBLEM FOR THE CLASS $S_p^{\lambda}(A, B, b)$

3.1	Introduction	33
3.2	Fekete Szegö Theorem for the Class $S^{\lambda}_{p}(A,B,b)$ Using Method of Ma and Minda	
	(1992)	35
3.3	Fekete Szegö Theorem for The Class $S_p^{\lambda}(A, B, b)$ Using Method of Mehrok and	
	Singh (2011).	44

CHAPTER FOUR : SECOND HANKEL DETERMINANT FOR THE CLASS $S_{p}^{\lambda}(A, B, b)$

4.1	Introduction	51
4.2	Upper Bounds for $\left a_{p+1}a_{p+3}-a_{p+2}^{2}\right $ for $f \in S_{p}^{\lambda}(A,B,b)$	53

REFERENCES	63
APPENDICES	69