UNIVERSITI TEKNOLOGI MARA

EVALUATION OF WALL-DEEP BEAM CONNECTION USING CCWA UNDER VERTICAL AND LATERAL LOADS

JERRISLY SULINDAP

Dissertation submitted in partial fulfillment of the requirements for the degree of

Master in Science Civil Engineering (Structure)

Faculty of Civil Engineering

April 2010

Abstract

Shear wall are structural vertical member that is able to resist combination of shear, moment and axial load induced by wind load and gravity load transferred to the wall from other structural members. Deep beam recieved loadings from upper shear walls and distribute to the widely spaced columns or deep beams that support the shear walls.

The development of construction industry contributed negative effect to our environment in term of wastage of construction materials. Taking sustainable development into account, the concrete industry needs to apply a variety of strategies concerning future concrete use. Crushed Concrete waste Aggregate (CCwA) was identified as one of the best alternative to replace the natural aggregate. The knowledge on the effectiveness of CCwA as replacement to natural aggregate was inadequate. This research used CCwA as coarse aggregate to replace natural aggregate in the concrete mix wall-deep beam specimen were constructed to investigate the performance of wall-deep beam when using CCwA as course aggregate. This research will be carrying out experimentally.

Two specimen of wall-deep beam were designed and prepared. The deep beam size was 200 x 1000 x 600 (Thickness: Length: Height) and the wall was 70 x 100 x 1000 (width: length: height). This dimension was reduced by half from the actual dimension to fulfill the testing facilities. CCwA was used in full course aggregate as replacement over natural aggregate. One sample was subjected to vertical load and another one was subjected to lateral load.

Under vertical load, the wall tend to fail under crushing whilst the connection is still intact. There were no cracks visible at wall-deep beam connection. The ultimate load and ultimate deflection were 934.62 kN and 3.66 mm respectively. All cracks and failure occured on the wall. It was found that the wall was governed by compression shear failure. Under lateral load, specimen failed at the connection of the wall-deep beam due to flexural. The ultimate moment was 10.17175 kNm and ultimate rotation was 0.088289 radian. It was found that wall-deep beam connection governed by brittle mode failure. Similar behaviour was observed in specimen on the wall-deep beam using natural aggregate.

Keyword: Wall-deep beam, Crushed Concrete waste Aggregate (CCwA), Vertical load, Lateral load.

CANDIDATE DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation

of Universiti Teknologi MARA. It is original and is the result of my own work, unless

otherwise indicated or acknowledged as references work. This topic not submitted yet

to any other academic or non-academic institution for any degree or qualification.

In the even that my thesis be found to violate the condition mentioned above, I

voluntary waive the right of conferment of my degree and agree be subjected to the

discipline rules and regulation of University Teknology Mara.

Name of Candidate Jerrisly Sulindap

Candidate's ID No. 2008544871

Programme Master in Science Civil Engineering

Faculty Civil Engineering

Thesis Title Evaluation of wall-deep beam connection using CCwA

under vertical and lateral loads

Signature of Candidate

Date 23rd April 2010

ii

TABLE OF CONTENTS

ABS	TRACT	i		
DECLARATION ACKNOWLEDGEMENT				
LIST OF TABLE				
LIST OF FIGURE				
		viii		
	RODUCTION	1		
1.1	Background	1 5		
1.2				
1.3	3			
1.4				
1.5	A			
1.6	Assumptions	8		
1.7	Limitation of study	8		
LITE	ERATURE REVIEW	9		
2.1	General	9		
2.2	Materials	9		
	2.2.1 Concrete	9		
	2.2.1.1 Workability	10		
	2.2.1.2 Curing	11		
	2.2.1.3 Cracking	11		
	2.2.2. Crushed Concrete waste Aggregate as coarse aggregate in			
	concrete mix	11		
	2.2.2.1 Fresh concrete	12		
	2.2.2.2 Hardened concrete	13		
	2.2.3 Reinforcement	14		
	2.2.3.1 Steel mesh or steel fabric as reinforcement	14		
2 2		18 19		
2.3 2.4	Strain Gauges			
2.4	Behaviour of loading 2.4.1 Concentric Axial Loading	20		
	2.4.1 Concentric Axial Loading 2.4.2 Bending	20		
2.5	Structural Behaviour	20 21		
4.5	2.5.1 Cracking	21		
	I I	21		
	2.5.3 Ductility	23		
2.6	2.5.4 Deflection	23		
2.6	Deep beam	23		
	2.6.1 Behaviour of deep beam	24		
~ ~	2.6.2 Shear design of deep beam	25		
2.7	Shear wall	25		
	2.7.1 Load bearing wall	77		

	2.7.2 Rein	forced concrete wall characteristic	27	
	2.7.2.1	Slenderness ratio	27	
	2.7.2.2	Aspect ratio	28	
	2.7.2.3	Reinforcement ratio, p and arrangement	28	
2.8	Connection	•	28	
	2.8.1 Lapp	ping	29	
		ding between concrete and reinforcement	29	
2.9	Theoretical analys		30	
	2.9.1 Briti	sh Standard	30	
	2.9.2 Eule	r's Buckling Load	32	
	2.9.3 Mon	nent resistance according to the analytical model ed	quation	
		b Bhatt et al, 2006)	33	
MET	HODOLOGY		34	
3.1	l General			
3.2	Research design	n	34	
3.3	Material proper	ties	36	
	3.3.1 Concr	rete	36	
	3.3.2 Ordin	ary Portland Cement (OPC)	37	
	3.3.3 Water	· ·	37	
	3.3.4 Fine a	and Coarse Aggregates Grading	38	
3.4	Mix Design Pro		38	
3.5	_	Compression Test	39	
3.6		n connection design	39	
3.7	Preliminary Lab		41	
	·	rial Preparation	41	
		ration of formwork	41	
	_	ninary Testing	42	
	3.7.3.1	Curing Process	42	
	3.7.3.2	Slump Test	42	
	3.7.3.3	Compression Test	42	
	3.7.3.4	Tensile Test	43	
	3.7.3.5	Bend Test	43	
3.8	Main Laboratory		44	
	3.8.1 Castin		44	
3.9	Experimental Se		45	
3.10	Analysis of the c	•	49	
	•			
RES	ULT AND DISCUS	SSION	50	
4.1	General		50	
4.2	Slump Test		50	
4.3	Compressive To	est	51	
4.4	Steel		53	
4.5	Tensile Test		56	
4.6	Bend Test		58	
4.7	Weld Strength Test			
4.8	Load-deflection		62	
		under vertical load	62	
		under lateral load	66	
4.9	Stress and Strain		68	