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ABSTRACT

Lead zirconate titanate (PZT) and lead niobate zirconate titanate (PNZT) belong to the 
ferroelectric family. They have high dielectric constants whereby the use of these 
materials allows reduction of circuit size. This research is focused on microwave 
characterization o f films made of these materials for monolithic microwave integrated 
circuit (MMIC) applications. Both films are deposited on silicon substrates using 
different deposition techniques. PZT films are deposited with sputtering to give 
thickness of 0.5 pm. The films have morphotrobic boundary phase since their Zr/Ti 
ratio is 50/50. In contrast, PNZT films are grown using metal organic deposition to 
give thickness o f 1 pm. PNZT films are doped with 4 % of niobium (Nb) with a Zr/Ti 
ratio of 20/80. Capacitors and transmission lines made of PZT and PNZT were 
fabricated using standard semiconductor processing. High frequency wafer probes 
were used to carry out microwave measurement from 5 to 20 GHz, and from this the 
results were used to correlate microstructure properties to high frequency behavior. 
X-ray diffraction and scanning electron microscopy were employed to investigate 
grain texture and crystalline properties. The X-ray diffraction results show that PNZT 
has higher peak of intensity as compared to PZT. This indicates that PNZT is more 
crystalline than PZT. Scanning electron microscope image also shows both samples 
have smooth surfaces. Estimations of the grain size of both samples were made 
using Scherrer’s formula to yield values of the order of 20 nm. Capacitor test 
structures of area 50 x 50 pm2 are used to analyze capacitance, permittivity and loss 
tangent of the films. The wafer probes were calibrated using short-open-load 
calibration technique prior to microwave measurement. Capacitance values were then 
extracted from S-parameter data; the findings indicate that the permittivity of PNZT is 
higher than PZT. For PNZT the permittivities range from 800 at 40 MHz and 
decreased to 20 at 20 GHz. On the other hand, for PZT the values decreased less 
drastically from 350 at 40 MHz to 110 at 20 GHz. However, the PZT samples were 
less lossy, with loss tangents of the order of 0.18 at 40 MHz to 0.07 at 20 GHz. The 
fact that PNZT samples showed higher permittivity is due to the effect of doping 
which conform to theory. Thus, for circuit miniaturization purposes, PNZT is 
preferred due to the higher permittivity. Transmission lines of length of 100 pm and 
width 5 pm were constructed on these films in microstrip and co-planar waveguide 
forms. For this purpose, short-open-load-thru (SOLT) calibration technique was 
implemented prior to insertion loss measurement. The results indicate that the 
performance of microstrip and co-planar waveguide were dependent on both the 
structure and the films used. Specifically, PZT-based coplanar waveguide showed 
slightly higher insertion loss than microstrip. On the contrary, PNZT-based co-planar 
waveguide and microstrip show comparable performances. This was probably due to 
the higher crystallinity showed by PNZT. Detailed analysis of the test structures using 
electromagnetic simulations reveal the loss was mostly caused by the impedance 
mismatch between the transmission line and the wafer probes. Extensive 
characterization at microwave frequencies carried on these films show that they are 
good candidates for use in MMIC. These appeared to be direct correlation between 
film property and high frequency behavior. The films exhibited considerable loss at 
high frequencies as expected of ceramic films.
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