UNIVERSITI TEKNOLOGI MARA

PARKINSON DISEASE GAIT CLASSIFICATION BASED ON MACHINE LEARNING APPROACH

HANY HAZFIZA BINTI MANAP

.

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

December 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Hany Hazfiza binti Manap
Student I.D. No.	:	2010790279
Programme	÷	Master of Sciences (EE 780)
Faculty	;	Faculty of Electrical Engineering
Title	ţ	Parkinson Disease Gait Classification Based on Machine Learning Approach
Signature of Student	:	Inglizza.
Date	:	December 2013

ABSTRACT

The aim of this thesis is to develop a Parkinson gait recognition technique that is able to evaluate and distinguish gait deviations experienced by Parkinson Disease (PD) patients from normal pattern. The research can be divided into two phase namely gait analysis of PD as compared to normal subjects, followed by gait classification using machine learning approach. Firstly, two types of statistical test are conducted which are independent t-test and Pearson's correlation test. Raw gait database which consist of four basic gait features, five kinetic gait features and also twelve kinematic gait features are acquired from prior walking experiments of both PD and normal subjects. Based on statistical analysis conducted, significant different between PD and normal gait pattern are observed for four features, which are the step length and walking speed from basic features, maximum extension of hip from kinematic feature and maximum horizontal push-off force from kinetic feature. Hence these significant features are appropriate to be utilized for recognition of PD gait. Next, Principal Component Analysis (PCA) is used as feature extraction for each gait features from basic, kinetic and kinematic parameter followed by normalization based on intragroup as well as inter-group. To evaluate the effectiveness of each gait features category, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Naive Bayes classifier (NBC) are chosen as classifier. Results obtained demonstrated that for ANN classifier, fusion of basic and kinematic gait features due to intra-group normalization attained performance with 100% of accuracy outperformed others. As for SVM with polynomial kernel function, the finest performance specifically 100% accuracy is attained based on basic gait features from intra-group normalization whilst NBC achieved the best accuracy of 93.75% due to fusion of kinetic and kinematic gait features with intra-group normalization. Overall, the results obtained proven the ability of the machine classifiers in classifying gait pattern of PD from normal gait pattern with basic spatiotemporal seems to be the most reliable feature for this purpose due to its superb performance that achieved during classification by the three classifiers.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xiii

CHAPTER ONE: INTRODUCTION

1.1	Overview of Thesis	1
1.2	Problem Statement	2
1.3	Research Objective	3
1.4	Significance of Study	4
1.5	Scope and Limitation of Study	4
1.6	Thesis Outline	5
1.7	Summary	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	6
2.2	Parkinson Disease and Motion Analysis System	7
2.3	Gait Deviations on PD Patients and Statistical Test	8
2.4	Artificial Neural Network as Classifier	11
2.5	Support Vector Machine as Classifier	16
2.6	Naive Bayes as Classifier	19
2.7	Summary	22

CHAPTER THREE: THEORETICAL BACKGROUND

3.1	Introduction				
3.2	Human Gait				
3.3	Parkin	Parkinson Disease and Gait Deviations Among Patients			
3.4	Statisti	cal Analysis- t-test and Pearson's Correlation Test	30		
3.5	ANN		31		
	3.5.1	Concept of ANN	31		
	3.5.2	Some Considerations in Designing an Optimum NN	32		
		Structure			
3.6	SVM		34		
	3.6.1	Concept of SVM	34		
	3.6.2	Common Types of SVM	35		
3.7	NBC		36		
	3.7.1	Bayes Formula	36		
	3.7.2	Concept of NBC	37		
3.8	Summ	ary	37		
СНА	PTER F	OUR: METHODOLOGY			
4.1	Introdu	action	38		
4.2	Gait D	ata Acquisition and Gait Features	38		
	4.2.1	Subject Preparation	38		
	4.2.2	Walking Experiment	42		
	4.2.3	Vicon Nexus Motion Capture System	43		
	4.2.4	Processing of Gait Data	45		
4.3	Statisti	ical Test: t-test and Pearson's Correlation Test	55		
4.4	Machi	Machines Classifiers			
	4.4.1	Cross-validation Method and Classification Mode	61		
	4.4.2	PCA as Feature Extraction, Inter-group Normalization and	62		
		Inter-group Normalization as Feature Normalization			
		Method			
	4.4.3	Machine classifiers: ANN, SVM and NBC	63		
	4.4.4	Performance Comparison	65		
4.5	Constr	Construction of Guide User Interface (GUI)			
4.6	Summ	ary	66		

vi