Universiti Teknologi MARA

Fruity Vegetable Recognition System Using Color Histogram and Brisk Features Extraction

Siti Hajar Binti Mohd Nasri

Thesis submitted in fulfillment of the requirements for Bachelor of Computer Science (Hons) Faculty of Computer and Mathematical Sciences

FEBUARY 2016

STUDENT'S DECLARATION

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

SITI HAJAR BINTI MOHD NASRI 2013960943

FEBUARY 04, 2016

ABSTRACT

This project study is about development of fruity vegetable recognition prototype system which is tomato and bitter melon. Unfortunately, there are some problem occur in process to deciding feature extraction of recognition process which is single descriptor may lead to failure because of similarity features and there are a lot of properties and features to be consider in image recognition. This project proposed to use Color Histogram as color feature and Binary Robust Invariant Scalable Keypoints (BRISK) features extraction as one of ways to overcome the problem. In process to extract the two main features, K-means clustering algorithm is used as background subtraction method with combination of Canny's Edge Detection and Mathematical Morphology Operation for shape extraction. The system training is conducted on 20 images for each category to build knowledge of it. Knowledge is built based on extraction value of color features and average value of 5 strongest keypoints. Then, from the built knowledge, system testing is conducted using other 10 images to check functionality of system to recognize image by calculate the similarity measure using Euclidean Distance formula. From the testing result, system prototype has shown satisfied rate of accuracy which is 86.67% for tomato and 90% for bitter melon. Furthermore, other than recognize a fruity vegetable, this project also help to give introductory knowledge and information about fruity vegetables. In conclusion, this system prototype is achieves project's objectives and its significance. Limitation of this current prototype can be improved by proposing other appropriate techniques and methods in order to enhance scope of this recognition prototype. This project also has potential to be enhancing to mobile application that provides flexibility of uses.

TABLE OF CONTENTS

CONTENTS

PAGE

TITLE PAGE	i
SUPERVISOR'S APPROVAL	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii

CHAPTER ONE: INTRODUCTION

1.1	Background Study	1
1.2	Problem Statement	2
1.3	Project Objective	2
1.4	Project Scope	2
1.5	Project Significance	3
1.6	Expected Outcome	4
1.7	Conclusion	4

CHAPTER TWO: LITERATURE REVIEW

2.1	Image Processing		5
	2.1.1	Image Pre-Processing	5
	2.1.2	Image Segmentation	7
	2.1.3	Feature Extraction	7
2.2	Vegetables		8
	2.2.1	Leafy Vegetables	10

	2.2.2	Fruity Vegetables	10
	2.2.3	Root Vegetables	11
2.3	Image	Descriptor	12
	2.3.1	Shape Descriptor	12
	2.3.2	Color Descriptor	13
	2.3.3	Texture Descriptor	15
2.4	Previous Works on Vegetable Identification		16
2.5	Conclusion		18

CHAPTER THREE: METHODOLOGY

3.1	Project Methodology Framework		19
3.2	Requirement Analysis		21
3.3	System	m Design	22
	3.3.1	Data Collection	22
3.4	Resea	rch Framework	23
	3.4.1	Pre – processing	24
		1) Background Subtraction using K-means Clustering	24
	3.4.2	Processing / Feature Extraction	26
		1) Color Histogram	26
		2) Canny's Edge Detection	28
		3) Mathematical Morphology Operation	29
		4) BRISK Feature extraction	31
	3.4.3	Training and Classification	33
		1) Build Knowledge	33
		2) Similarity Measure using Euclidean Distance	33
3.5	Testin	ıg	36
3.6	Project Timeline		36
3.7	Concl	usion	37

CHAPTER FOUR: EXPERIMENT AND RESULT

4.1	Introduction	38
4.2	Pre-processing	40