UNIVERSITI TEKNOLOGI MARA

EXTRACTION OF NATURAL COLORANT FROM ONION (Allium cepa) SKINS USING PRESSURIZED LIQUID EXTRACTION (PLE) FOR APPLICATION IN FABRIC DYEING

AMIRAH BINTI SHARIF

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

June 2010

Candidate's declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis is found to violate the conditions mentioned above, voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate	Amirah binti Sharif
Candidate's ID No.	2005106922
Programme	Master of Science
Faculty	Applied Sciences
Thesis Title	Extraction of natural colorant from onion (Allium cepa)
	skins using pressurized liquid extraction (PLE) for
	application in fabric dyeing

Signature of Candidate

Date

June 2010

ABSTRACT

Complete extraction of colorants often requires several steps and may use a mixture of several solvents. Pressurized liquid extraction (PLE) is an alternative method for colorants extraction. This study focuses on the influence of some operative parameters of PLE employed for the extraction of colorants from onion (Allium cepa) skins. Extractions were conducted at temperatures ranging from 50 to 150 °C with a pressure of 1000 psi and two extraction cycles of 15 minutes. The effect of two extraction solvents (distilled water and 0.1 % HCl in methanol (v/v)) was examined. It was found that extraction temperature and type of extraction solvent influenced the yield and color of extracted colorant, and the composition of anthocyanins extracted. Elevated temperatures were found to increase the yield significantly, while the effect of extraction pressure was found to be insignificant. In acidified methanol extraction, the yields (colorant (g) / 100 g sample) varied from 9.56 ± 0.46 to 16.71 ± 1.60 while using water; the yields varied from 7.06 \pm 1.30 to 20.99 \pm 0.75. Highest amount of yield was obtained at 150 °C for both acidified methanol and water extractions. However, the color of extract changes from red to brownish red as the extraction temperature increased probably due to degradation of anthocyanins. The color measurement indicated that PLE method using acidified methanol gave stronger reddish shade compared to that extracted using water. Major anthocyanins compounds identified include cyanidin 3-glucoside, cyanidin 3-rutinoside and cyanidin chloride and their composition depended on the extraction temperature and type of solvent used. Data showed that highest amount of identified anthocyanins were extracted at temperature of 80 °C using acidified methanol. Extracted cyanidin 3-glucoside, cyanidin 3-rutinoside and cyanidin chloride were 43.68 \pm 0.24, 3.86 \pm 0.04 and 1.55 \pm 0.03 ppm, respectively. Using similar solvent, the yield and composition of anthocyanins obtained by conventional soaking method was comparable to those obtained using PLE at 80 °C. Colorant extract was successfully converted into conveniently handled powder by forming inclusion complexes with β cyclodextrin. Selected powdered colorants were used for dyeing various types of fabric with different mordants. It was found that wool gave a broader range of shades. Based on washing fastness test, dyed wool showed good washing property.

TABLE OF CONTENTS

Page

TITLE PAGE	
CANDIDATE'S DECLARATION	
ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	х
ABBREVIATIONS	xii
CHAPTER 1 : INTRODUCTION	
1.1 General overview	I

1.2	Problem statement	3
1.3	Scope and limitation of the study	3
1.4	Objectives of the study	4

CHAPTER 2 : LITERATURE REVIEW

2.1	Natural colorant		5
2.2	Plant pigments		6
	2.2.1	Anthocyanins	9
2.3	Extrac	ction of natural colorants	13
	2.3.1	Conventional extraction method	14
	2.3.2	Supercritical fluid extraction (SFE)	14
	2.3.3	Microwave-assisted extraction (MAE)	15
	2.3.4	Pressurized liquid extraction (PLE)	16
2.4	Application of natural colorants in textile industries		20
	2.4.1	Encapsulation of colorants	21

2.5	Factors affecting quality of colors in fabric dyeing		23
	2.5.1	Fabric materials	23
	2.5.2	Mordants	25
2.6	Color	fastness	26

CHAPTER 3 : MATERIALS AND METHODS

3.1	Chemicals		29
3.2	Standa	rds	29
3.3	Fabrics	5	30
3.4	Sample	e pre-treatment	30
3.5	Pressu	rized liquid extraction (PLE)	30
3.6	Soakin	g method	31
	3.6.1	Water extraction	31
	3.6.2	Acidified methanol extraction	31
3.7	Chemi	cal analysis of extracts	32
	3.7.1	UV-Vis analysis	32
	3.7.2	Color measurement	32
	3.7.3	High Performance Liquid Chromatography (HPLC)	32
		analysis	
3.8	Encap	sulation of extract	33
3.9	Charac	cterization of inclusion complexes	33
3.10	Dyein	g of fabrics	34
3.11	Color	fastness test	34
3.12	Statistical analysis 35		

CH	APTER 4 : EXTRACTION OF COLORANTS FROM	
	ONION (Allium cepa) SKINS USING	
	PRESSURIZED LIQUID EXTRACTION (PLE)	
4.1	Effect of extraction pressure	36
4.2	Effect of extraction solvents	37