Universiti Teknologi MARA

Color-Based Butterfly Species Identification Using Support Vector Machine

Norina Arliana Binti Sopiana

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) Faculty of Computer and Mathematical Sciences

STUDENT DECLARATION

I certify that this thesis and the project to which it refers is the product of my own
work and that any idea or quotation from the work of other people, published or
otherwise are fully acknowledged in accordance with the standard referring practices
of the discipline.

.....

NORINA ARLIANA BINTI SOPIANA 2014856302

ABSTRACT

Previously, few of expert found that the butterfly identification was complicated, more time consuming and difficult. Butterfly species are difficult to identify because they have different in size, color, and shape. Butterfly Species Identification is an identification of butterfly species that involves a butterfly image. The purpose of this project is to identify butterfly species. This project proposed an appropriate method for the butterfly species identification which is to identify the species of the butterfly images. The scope of this project covers of two species of butterfly which are Vanessa atalanta and Aglais io. The data has been collected from Datasets for Computer Vision Research website. For project methodologies, there are three phases such as data collection, processing and post-processing. For data collection, two species are involved Vanessa atalanta and Aglais io that have 100 data image for each species. In processing phase, there have feature extraction and butterfly species identification. For feature extraction, color histogram technique was used to extract feature from butterfly image. The features include mean, variance, standard deviation and skewness. These color features are calculated from the color component of red, green and blue. This feature classify using Support Vector Machine (SVM) was applied as a technique for identify two group of butterfly species. Testing and evaluation are includes in postprocessing phase. The results proved that it significantly works on two butterfly species of Vanessa atalanta and Aglais io to classify that butterfly images. Therefore, this prototype will be significantly benefits to the users.

TABLE OF CONTENT

CON	TENT	PAGE
SUPE	RVISOR APPROVAL	ii
STUD	ENT DECLARATION	iii
ACKNOWLEDGEMENT ABSTRACT		iv
		V
TABL	E OF CONTENT	V
LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS		viii
		ix
		Х
СНАР	PTER ONE: INTRODUCTION	
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Objectives Scope Significance	1 2 2 3 4 4 7
СНАН	PTER TWO: LITERATURE REVIEW	
2.1 2.2 2.3 2.4 2.5 2.6	Butterfly Species	8 8 10 10 17 22
СНАН	PTER THREE: METHODOLOGY	
3.1 3.2 3.3 3.4	Introduction Framework Data Collection Feature Extraction	23 23 24 25
	3 / 1 Color Resed Feature Extraction	26

3.5	Butterfly Species Identification 3.5.1 Support Vector Machine (SVM) Classifier	28 29
3.6 3.7	Testing and Evaluation Hardware and Software Requirements	30 31
3.8	Conclusion	32
СНАР	TER FOUR: PROTOTYPE DESIGN AND IMPLEMENTATION	
4.1	Introduction	33
4.2	Prototype 4.2.1 Prototype Initialization	33 33
	4.2.2 Open New Image	34
	4.2.3 Generate the Step of Feature Extraction Process	36
	4.2.4 Identification Result	37
4.3	Conclusion	38
СНАР	TER FIVE: RESULTS AND DISCUSSIONS	
5.1	Introduction	39
5.2	Feature Extraction Butterfly Species Identification	39
5.3	Butterfly Species Identification	40
CHAP	TER SIX: CONCLUSIONS AND FUTURE WORK	
6.1	Introduction	43
6.2	Summary of the Project	43
6.3 6.4	Strengths and Limitations of the Prototype Recommendations and Future Works	44 45
6.5	Conclusion	45
REFE	RENCES	46
APPE	NDICES	
APPEN	NDIX A: RESULTS OF BUTTERFLY SPECIES IDENTIFICATION FOR	
VANE	SSA ATALANTA	51
APPEN	NDIX B: RESULTS OF BUTTERFLY SPECIES IDENTIFICATION FOR	
AGLA	IS IO	73