FINITE ELEMENT ANALYSIS OF PROFILED STEEL SHEET DRY BOARD AS WALLING UNIT WITH WINDOW OPENING

A Report Submitted to the Faculty of Civil Engineering University Teknologi MARA In Partial Fulfillment of the Requirement for the Award of Bachelor in Engineering (Hons) (Civil)

Presented by

FAZROL BIN SAPUAN

Faculty of Civil Engineering Universiti Teknologi MARA 40450 Shah Alam, SELANGOR i

I hereby declare that this report has not been submitted, either in the same or different form to this or any university for a degree, and except where reference is made to the work of others, it is believed to be original.

(FAZROL BIN SAPUAN)

ABSTRACT

The Profiled Steel Sheet Dry Board (PSSDB) system is a thin-walled, lightweight composite structure consisting of Profiled Steel Sheeting connected to dry boards by means of self drilling, self tapping screws and is a structural load bearing system. The size of the model of the wall selected is **3000 mm x 3000 mm x 78 mm**. It is a square section with window opening section at **1200 mm x 1200 mm** and symmetrically positioned in the center of the specimen. The study is based on the concept that the load bearing capacity of the composite wall is derived from the individual components, namely the profiled steel sheeting, dry board and the interaction between these two. Therefore, an analytical method is essential to predict the behaviour of the PSSDB system as walling unit with window opening. A linear finite element model has been developed to predict the full range of behaviour of PSSDB panel. LUSAS (1999), a finite element package (LUSAS version 13.4) has been employed for this purpose. LUSAS pre-processing options provide on-screen modelling which include wide range of features like colour plots of deflection, stress and strain contours combining with different load cases.

CONTENTS

	Page
TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	viii

CHAPTER I	INTRODUCTION	
1.1	An Overview	1
1.2	Problem Statement	3
1.3	Objective of Study	3
1.4	Scope of Study	3
1.5	Limitation of Study	4
1.6	Assumption	4

CHAPTER II LITERATURE REVIEW

2.1	Genera	1	5
2.2	Load B	Load Bearing Wall	
	2.2.1	Timber Load Bearing Wall	6
	2.2.2	Masonry Load Bearing Wall	7
	2.2.3	Steel Load Bearing Wall	8
	2.2.4	Composite Walling	9
2.3	PSSDB	System	10
	2.3.1	Bondek II Profiled Steel Sheeting	11
		2.3.1.1 Material Specification	12
	2.3.2	Dry Board	13
		2.3.2.1 Cemboard	13
	2.3.3	Connectors	14

v

			vi
CHAPTER III	FINITI	E ELEMENT METHOD	
3.1	Introduction		
3.2	Finite E	Element Method	15
3.3	Choice of Element in LUSAS Finite Element Package		
	3.3.1	LUSAS Linear Isotropic Materials	17
	3.3.2	LUSAS 3-D Thin Shell Elements (QSI4)	18
	3.3.3	LUSAS 3-D Joint Element (JSH4)	18
CHAPTER IV	МЕТН	ODOLOGY	
4.1	Overview		20
4.2	Model	of PSSDB System	20
	4.2.1	Arrangement of Profiled Steel Sheeting	21
	4.2.2	Arrangement of Cemboard	22
	4.2.3	Arrangement of Screws	22
4.3	Modelling Consideration		23
	4.3.1	Idealisation of the Model	23
	4.3.2	Preparation of Data	23
	4.3.3	Defining the Model Geometry	24
	4.3.4	Defining Line Mesh for Connectors	24
	4.3.5	Defining Surface Mesh	24
	4.3.6	Defining the Geometric Properties	27
	4.3.7	Defining Material Properties	27
	4.3.8	Defining Support Conditions	28
	4.3.9	Defining Loading Conditions	28
CHAPTER V	RESUI	TS AND DISCUSSIONS	
5.1	Discuss	ions	30
5.2	Results		32
CHAPTER VI	CONC	LUSIONS AND RECOMMENDATIONS	
6.1	Conclusions		39
6.2	Recom	mendations	40
REFERENCES			44