Universiti Teknologi MARA

Health Insurance Product Recommendation System Using Fuzzy Logic Technique

Muhamad Harith Khalid Bin Walit

Thesis submitted in fulfilment of the requirements for Bachelor of Information Technology (Hons.) Information Systems Engineering Faculty of Computer and Mathematical Sciences

January 2017

STUDENT'S DECLARATION

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

MUHAMAD HARITH KHALID BIN WALIT 2014395211

JANUARY, 2017

ABSTRACT

This project is developed to recommend the health insurance package that might suitable to the client regarding the client preferences by implementing Fuzzy Logic Technique. Allianz Insurance Berhad (AMB) is chosen as stakeholder for this project. Allianz provides several types of insurance which are General Insurance, Business Insurance and Life Insurance. There are three (3) different user for this system which are the head of branch which has the role as admin in the system, the insurance agent and the potential client that might use the system to view which health insurance package recommended. Currently, the insurance agent are having a problem to recommend the best package to their customer due to every customer has their different preferences that will lead to different type of packages. Therefore, several objectives had been identified in order to minimize the problem. This insurance recommendation system helps the insurance agent and potential customer to check their suitable package by providing the benefit and the percentage of recommendation on the insurance package according to the client uncertainty client preferences such as age, monthly payment and other risks. Fuzzy expert system is implemented in this project because it is more suitable in order to determine the percentage of suitable insurance package based on customer preferences. By using this technique, it is easier to identify and explicit the knowledge to determine suitable insurance package that involved which imprecise and vague data. Sugeno-style inferences are used in the fuzzy expert system because it is well suited for mathematical analysis. As the fuzzy expert system prototype have been developed, the combination of health insurance processed data which is the benefits and package characteristic and rules would produce results based on user's input which are the client preferences. The result of this project depends on the variety of inputs by the user to recommend the suitable insurance package and which is the most recommended. In the future, the system should be improve a lot more widen scope by add other types of insurance package such as properties, travel and transportation package. With the improvement, the system will have much more features that are not limited and can be used in wider perspective.

TABLE OF CONTENT

CONTENTS

PAGE

SUPERVIS	ii				
STUDENT	iii				
ACKNOW	iv				
ABSTRAC	V				
TABLE OF	vi				
LIST OF F	ix				
LIST OF T	Х				
CHAPTER	1				
1		21			
1.1 Ba	ckground of Study				
1.2 Pr	2 Problem Statement				
1.3 Ai	1.3 Aim				
1.4 Ot	1.4 Objective				
1.5 Re	5				
1.6 Re	5				
1.6.1	6				
1.6.2	6				
1.7 Su	6				
CHAPTER	7				
2		7			
2.1 Ov	verview of Insurance	7			
2.1.1	Type of Insurances	8			
2.1.2	Life Insurance	8			
2.1.3	Motor Insurance	8			
2.1.4	Travel Insurance	9			
2.1.5	Personal Accident Insurance	10			
2.1.6	Medical and Health Insurance	10			
2.1.7	Asset Insurance	10			
2.1.8	Advantages of Insurance	11			
2.1.9	Disadvantages of Insurance	11			

	2.2 Related Works			12	
	2.2	2.1	Google News	12	
		2.2	E-commerce	13	
	2.2	2.3	Social Network	13	
	2.3	Cor	nparison of Existing Systems	14	
	2.4	Rec	commender Approach	15	
	2.4	4.1	Artificial Neural Networks (ANN)	15	
	2.4.2		Fuzzy Logic (FL)	16	
	2.4.3		Rule Based Expert System (RBES)	17	
	2.5	Cor	nparison of Techniques	18	
	2.6	Met	thodology	20	
	2.0	6.1	Software Development Life Cycle (SDLC)	20	
	2.0	6.2	Waterfall Model	21	
	2.0	6.3	Rapid Application Development (RAD)	22	
	2.0	6.4	Prototyping Model	23	
	2.7	Cor	nparison of Methodology	25	
	2.8	Dis	cussion	26	
	2.9	Sun	nmary	27	
	CHAP	TER 7	THREE: METHODOLOGY	28	
	3			28	
	3.1	Ove	erview of Methodology	28	
	3.2	Req	uirement Gathering and Planning Phase	30	
	3.3	Ana	alyze Phase	31	
	3.4	Des	sign Phase	31	
	3.5	Dev	velopment Phase	33	
	3.6	Har	dware and Software Requirement	34	
	3.0	6.1	Hardware Requirement	35	
	3.0	6.2	Software Requirement	35	
	3.7	Sun	nmary	36	
	CHAPTER FOUR: RESULTS AND ANALYSIS				
	4			37	
	4.1	Inte	erview Results	37	
	4.2	Dat	a Collection	38	
	4.3	Dat	a Gathered	40	
	4.4	Dat	a Pre-processing Result	40	
	4.4	4.1	Data Reduction	41	
			V11		