UNIVERSITI TEKNOLOGI MARA

IDENTIFYING MOVEMENT OF OBJECT IN MULTIPLE IMAGES VIA PARTICLE SWARM OPTIMIZATION ALGORITHM

MOHD HAIDHAR IQBAL BIN HASSAN

BACHELOR OF COMPUTER SCIENCE (Hons.)

FEBRUARY 2016

STUDENT'S DECLARATION

I certify that this report and the project to which it refers is the product of my own work
and that any idea or quotation from the work of other people, published or otherwise are
fully acknowledged in accordance with the standard referring practices of the discipline.

.....

MOHD HAIDHAR IQBAL BIN HASSAN 2013922541

FEBRUARY 1, 2016

ABSTRACT

Human eyes are limited to only what they can perceived. Sometimes, there exist additional information in images that cannot be identified by simply looking at one part. Movement of objects in multiple photographs for example is very vague and can only be identified with thorough inspection. For example, similar to one game and that is a spot the difference of images. When human test this game it maybe take a few minutes to spot the difference from that images and sometimes the result is incorrect. Then this project wants to achieve better than human result. This project used one of algorithm from category Evolutionary Computing (EC) and that algorithm is Particle Swarm Optimization (PSO). Every algorithm or technique has their own process to solve the problem. EC optimize the problem by considering different criteria in order to find its optima. For image processing, EC has the potential to optimize in terms of identifying moving objects as digital images has a lot of criteria to be considered. In PSO algorithm, it solved the problem by using their own process such as particle initialization, evaluate fitness, convergence and other things. This propose of this project is to design and develop a prototype to identify moving objects in multiple images using PSO algorithm.

TABLE OF CONTENTS

CONTENTS		PAGE
SUPERVISOR'S	APPROVAL	ii
DECLARATION		iii
ACKNOWLEDG	EMENT	iv
ABSTRACT		v
TABLE OF CON	TENTS	vi
LIST OF FIGUR	E S	ix
LIST OF TABLE	\mathbf{S}	xi
LIST OF ABBREVIATIONS		xii
CHAPTER ONE:	INTRODUCTION	
1.1 Overv	view	1
1.2 Proble	em Statement	2
1.3 Objec	tives	2
1.4 Scope	:	2
1.5 Resea	rch Significance	3
1.6 Chapt	er Summary	3
CHAPTER TWO	: LITERATURE REVIEW	
2.1 Image	Processing	7
2.2 Evolut	tionary Computing	9
2.3 Particl	e Swarm Optimization (PSO)	10
2.4 Relate	d Work	13

2.7 Chapter Summary	17
CHAPTER THREE: METHODOLOGY	
3.1 Overview of Research Framework	18
3.2 Planning and Analysis	19
3.3 Data Collection	21
3.4 Algorithm Design and Development	25
3.5 Testing and Evaluation	26
3.6 Chapter Summary	28
CHAPTER FOUR: DESIGN AND DEVELOPMENT	
4.1 Design Flow of Process	29
4.2 Development	38
4.3 Chapter Summary	44
CHAPTER FIVE: TESTING AND EVALUATION	
5.1 Introduction	45
5.2 Functionally Test	45
5.3 Ground Truth Evaluation	48
5.4 Chapter Summary	63
CHAPTER SIX: CONCLUSION AND RECOMMENDATION	
6.1 Overview	64
6.2 Conclusion	64
6.3 Recommendation	65
6.4 Chapter Summary	65
REFERENCES	66