FINAL YEAR PROJECT REPORT BACHELOR IN ENGINEERING (HONS) (CIVIL) FACULTY OF CIVIL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

FINITE ELEMENT ANALYSIS OF PROFILED STEEL SHEET DRY BOARD SYSTEM AS WALLING UNIT WITH WINDOW OPENING

WAN NORWAHIDA HANIM BINTI WAN MUHAMAD

MOKHTER (99195186)

MARCH 2002

I hereby declare that the report has not been submitted, either in the same form, to this or any other university for a degree and except where the reference is made to the work of others, it is believed to be original

(WAN NORWAHIDA HANIM BT WAN MUHAMAD MOKHTER)

ABSTRACT

Profiled Steel Sheet Dry Board (PSSDB) system is a novel form of composite walling panel. The study is on profiled steel sheet dry board system as walling unit with window opening symmetrically positioned in center of the specimen. The specimen is rectangular section sized 1000mm x 830mm x 1mm, and the opening is 200mm x 400mm. It is an analytical investigation on the behavior of the PSSDB system as walling unit with window opening. The study is based on the concept that the load bearing capacity of the composite wall is derived from the individual components, namely, the steel sheet, the dry board and the interaction between these two. A numerical finite element package, known as LUSAS software of finite element analysis is used in modeling process. The analysis determines the deflection, critical buckling load and stress- strain pattern of the specimen. It is found that the profiled steel sheet is the major element in resisting load and it is capable in reducing buckling problem. Profiled steel sheet also improves the stability of the section under axial loading. Cemboard carries a portion of load and it is found that cemboard helps in delaying the buckling of PSSDB panel. The results of deflection, critical buckling load and stress-strain pattern shows that PSSDB panels have a good load bearing capacity as wall unit.

TABLE OF CONTENTS

		Page			
ACKN	NOWLEDGEMENT	i			
ABSTRACT					
TABLE OF CONTENTS					
LIST (OF TABLES	vi			
LIST (OF FIGURES	vii			
CHAF	PTER 1 INTRODUCTION				
1.1	Introduction	1			
1.2	Objective of the study	2			
1.3	Problem statement				
1.4	Scope of study				
1.5	Assumption	3			
CHAI	PTER 2 LITERATURE REVIEW				
2.1	Wall	5			
2.2	Load Bearing Wall				
	2.2.1 Masonry load bearing wall	6			
	2.2.2 Steel load bearing wall	6			
	2.2.3 Timber load bearing wall	7			
	2.2.3.1 Advantage of timber				
	2.2.3.2 Disadvantage of timber	8			
	2.2.4 Precast load bearing wall	8			
	2.2.4.1 Advantages of precast	9			
2.3	Composite material				
	2.3.1 Advantages of composite materials over metals	10			
2.4	Profiled Steel Sheet Dry Board System (PSSDB)				
	2.4.1 Advantages of PSSDB System	12			
2.5	Components of PSSDB				
2.5.1	Profiled Steel Sheeting				

2.5.1.1 PEVA 45 as Profiled Steel Sheet

		2.5.2 Dry Board	15
		2.5.2.1 Plywood	15
		2.5.2.2 Chipboard	16
		2.5.2.3 Cemboard	16
	2.5.3	Connectors	17
2.6	Structural Behavior of PSSDB		17

CHAPTER 3 FINITE ELEMENT ANALYSIS USING LUSAS

3.0	Research Methodology	18			
3.1	Finite element method				
	3.1.1 Element	21			
	3.1.2 Finite Element	21			
3.2	Creating a model				
3.3	Engineering Problem Finite Element Model Zoom in on				
	individual element				
3.4	LUSAS Finite Element System				
	3.4.1 Pre-Processing	24			
	3.4.2 Finite Element Solver	24			
	3.4.3 Result Processing	24			
3.5	LUSAS Composite	24			
3.6	Analysis type				
	3.6.1 Linear static analysis	25			
	3.6.2 Linear buckling analysis	25			

CHAPTER 4 METHODOLOGY

4.1	Idealiz	Idealization of the model			
4.2	Procedure in analyzing the panel using LUSAS 13.3				
	4.2.1	Preparatio	n of data	27	
	4.2.2	Defining t	he model geometry	27	
	4.2.3	Attributes		28	
	4.2	2.3.1 Meshi	ng	28	
		4.2.3.1.1	3 dimensional Flat Thin Shell Element	31	
		4.2.3.1.2	3 dimensional Element for Engineering,	31	
			Kirchhoff and Semiloof / Semiloof Beams Joint		