STRUCTURAL PERFORMANCE OF STEEL FIBER REINFORCED CONCRETE TWO-RIBBED WALL PANEL UNDER COMPRESSIVE LOAD

Ву

WAN AZLINA BINTI WAN MOHD YUSOFF

This report is submitted as a partial requirement for the degree of Bachelor of Engineering (Hons) Civil

UNIVERSITI TEKNOLOGI MARA
JULY 2014

DECLARATION BY THE CANDIDATE

I, Wan Az	lina Bir	ıti W	an M	ohd Yı	usoff, U	JiTM No.2	201116	2015	declare	d th	nat th	ne wo	rk ir	ı this
report is m	y own v	vorks	excep	ot the ic	dea and	l summariz	es whi	ch I ha	ave clar	ifie	d the	eir sou	rces	. The
appropriate	e credit	has	been	given	where	reference	s have	been	made	to	the	work	of	other
researchers														

.....

Student Name : WAN AZLINA BINTI WAN MOHD YUSOFF

Student ID : 2011162015

Date : 7 JULY 2014

ABSTRACT

This study deals with structural performance of two-ribbed wall both samples reinforces with

steel fibre except one without steel fabric. Laboratory works tested two walls sample with size

1500mm x 1000mm x 75mm (height x length x width). The wall samples reinforced with steel

fabric size B7 and steel fibre HE 0.75/60 with concrete grade 30. The wall panel tested under

axial load connected to hydraulic jack with 2000 kN of capacity limit. The support condition of

both walls is Pinned-Pinned. Analysis of results was done based on the ultimate load carrying

capacity, wall displacement, mode of failure and cracking pattern. From experimental work, the

ultimate load carrying capacity for wall with steel fabric (WSF) was 1590 kN and 1158.2 kN for

wall without steel fabric (WOSF). Meanwhile, the theoretical calculation is 1177 kN and 999.34

kN respectively. Furthermore, the horizontal displacement was 10.79 mm for WSF and 22.84

mm for WOSF. The location of the maximum displacement is located at 1050 mm from the

bottom while wall WOSF occurs approximately at 1350 mm (about 0.7H of the wall height).

Wall WSF experienced crushing at the top end along load distribution area.

Keywords: Two-ribbed wall, steel fibre, steel fabric.

TABLE OF CONTENTS

ABST	RACT	i		
ACKNOWLEDGEMENT				
TABI	TABLE OF CONTENTS			
LIST OF FIGURES				
LIST	LIST OF TABLES			
CHA	PTER 1: INTRODUCTION			
1.1	Background of Study	1		
1.2	Problem Statement	2		
1.3	Objective of Study	3		
1.4	Scope of Study	3		
1.5	Significant of Study	4		
1.6	Summary	5		

CHAPTER 2: LITERATURE REVIEW

2.1	Precast concrete wall panel	6
2.2	Steel Fibre Reinforced Concrete (SFRC)	9
2.3	Steel Fabric	14
2.4	Reinforced Concrete Wall Panel Design (BS 8110-1:1997)	15
	2.4.1 Stocky Reinforced Walls	16
	2.4.2 Slender Reinforced Walls	16
	2.4.2.1 Limit of Slendemesss	17
2.5	Summary	18
СН	APTER 3: METHODOLOGY	
3.1	Introduction	19
3.2	Preparation of Materials	21
3.3	Formwork Preparation	22
3.4	Cube Specimen Testing	
3.5	Casting and Curing	24
3.6	Steel Fabric Test	24
	3.6.1 Tensile Test	25
	3.6.2 Bend Test	25
	3.6.3 Wold Test	26