FINITE ELEMENT ANALYSIS ON LIGHTWEIGHT CONCRETE WALL PANEL WITH SQUARE OPENING UNDER AXIAL LOAD

By

.

SYERRY SHAFIKHA BT MAT NOR HAIRI

This report is submitted as a

partial requirement for the degree of

Bachelor of Engineering (Hons) Civil

UNIVERSITI TEKNOLOGI MARA

DECEMBER 2012

DECLARATION BY CANDIDATE

I (SYERRY SHAFIKHA BT MAT NOR HAIRI, 2010861664) confirm that the work in this report is my own work and appropriate credit has been given where the references have been made of the other researchers.

Student Name

: SYERRY SHAFIKHA BT MAT NOR HAIRI

Student Id

: 2010861664

Date

: 5th December 2012

ABSTRACT

Wall panel is one of the structure that being used in completing a structure. It acts as the medium of a load transfer before the load can be disperses to the foundation. Nowadays, we being awaken by a severe construction failure that will make a harmful environment to the human being. In ensuring that our structure component especially wall panel are being build safely and will not give a risk of harmful environment, one of the method is by doing a research on finite element analysis by using LUSAS Modeller Program Version 14.3.

The objectives of this research are to determine the stress concentration around the opening and to determine the mode of failure of the wall with and without opening. In this research, LUSAS Modeller Program Version 14.3 was being used to analyse of wall panel model sizing 1500mm x 1500mm x 75mm (Length x Height x Width). In order to perform this analysis, the model geometry was entered in terms of geometry features which are sub-divided into finite elements. The wall were modelled using 3-dimensional axis, that is horizontal, vertical and thickness which numbered as x, y, and z-axis. The concrete and reinforcement assumes was perfectly bounded due to superposition of nodal degrees of freedom. Grade C20 concrete was used for material properties. The lightweight concrete that was being used has a several specifications. It is made from OPC and contains fine sand, steel fibre and polystyrene beads. The wall panel was analysed due to axially loaded at the top of wall and it was fully fixed support at the bottom of the wall panel and fixed in X-Z direction at the top of it.

The result that we gained is the deformation of the shape for both of the wall is different. And the stress concentration for wall with opening is higher than the wall without opening.

TABLE OF CONTENT

CHAPTER	PAGE
DECLARATION BY CANDIDATES	i
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENT	v
LIST OF FIGURES	viii
LIST OF TABLE	xi
LIST OF ABBREVIATIONS	xii

1. INTRODUCTION

1.1. Research Background	1
1.2. Problem Statement	3
1.3. Objectives	4
1.4. Scope and Limitations	4
1.5. Significance	6

2. LITERATURE REVIEW

2.1. Introduction	7
2.2. Finite Element Analysis	7
2.3. Lightweight Concrete	8
2.4. Polystyrene	9
2.5. Steel Fiber Reinforced Concrete	10
2.6. Wall Panel Simulation	11
2.6.1. Solid Wall with Opening	11
2.6.2. Axial Load	11
2.6.3. Stress Concentration	12

3. METHODOLOGY

3.1. Introduction	13
3.2. Data Preparation	14
3.3. Wall Panel Dimension Details Model	15
3.4. Wall Panel Modelling	17
3.4.1. Defining the Geometry	18
3.4.2. Groups Defining	22
3.5. Attributes	28
3.5.1. Defining the Mesh	29
3.5.1.1. Reinforcement Bar Mesh	29
3.5.1.2. Concrete Mesh	30
3.5.2. Defining the Geometric Properties	31
3.5.3. Defining the Material Properties	32
3.5.3.1. Reinforcement Bar Material Properties	32

.