

UNIVERSITI TEKNOLOGI MARA

**MATHEMATICAL MODELS OF THE
SPREAD OF DENGUE FEVER IN
SHAH ALAM**

NURAINI BINTI YUSOFF

Thesis submitted in fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Computer and Mathematical Sciences

July 2015

CONFIRMATION BY PANEL OF EXAMINERS

I certify that a panel of examiners has met on the 3rd March 2015 to conduct the final examination of Nuraini binti Yusoff on her Doctor of Philosophy thesis entitled "Mathematical Models of the Spread of Dengue Fever in Shah Alam" in accordance with Universiti Teknologi MARA Act 1976 (Akta 173). The panel of Examiners recommends that the student be awarded the relevant degree. The panel of Examiners was as follows:

Daud Mohamad, PhD
Professor
Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA
(Chairman)

Wan Eny Zarina Wan Abdul Rahman, Ph.D
Associate Professor
Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA
(Internal Examiner)

Bachok M Taib, PhD
Professor
Faculty of Science and Technology
Universiti Sains Islam Malaysia
(External Examiner)

Syamsuddin Toaha, PhD
Professor
Department of Mathematics
Hasanuddin University
Indonesia
(External Examiner)

SITI HALIJJAH SHARIFF, PhD
Associate Professor
Dean
Institute of Graduate Studies
Universiti Teknologi MARA
Date: 24th July 2015

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name	:	Nuraini Binti Yusoff
Student I.D. No.	:	2008509419
Programme	:	Doctor of Philosophy (Mathematics)
Faculty	:	Computer and Mathematical Sciences
Thesis Title	:	Mathematical Models of the Spread of Dengue Fever in Shah Alam
Signature of Student	:	
Date	:	July 201

ABSTRACT

Dengue fever has been a serious health threat in Malaysia and more than 50 other countries which are located in tropical and subtropical regions. It is a vector-borne disease and its main vector is the *Aedes aegypti* mosquito. Understanding the spread of this disease will certainly help in controlling it and this can be done with the help of mathematical models. In order to come up with a suitable model, an in depth study on the role of temperature and amount of rainfall in contributing to the number of dengue fever cases was done. In this study, two main parts of modeling were done, one was the modeling of the population dynamics of the vector, and another was on the modeling of the epidemic. In the modeling of the *Aedes aegypti* mosquito, a stage-structured model was constructed based on the temperature and rainfall of Shah Alam. A simulation was done and verified with the surveillance data collected by Majlis Bandaraya Shah Alam. The result obtained was tabulated and represented as a cosine function. For the epidemic model, the vector population was divided into two stages, before and after first egg-laying. This was done because it was found that the biting rates for these two groups of vectors vary and affect the modeling result. Result from the modeling of *Aedes aegypti* mosquitoes was used as the recruitment rate for vectors in the construction of the vector-host epidemic model. In the process of modeling, the classic SIR epidemic model was also explored and a method of parameter identification was obtained. This method was known as the multistage Adomian decomposition method and it was used to compute the transmission rate. One of the results obtained in the modeling of the *Aedes aegypti* mosquito is the identification of the conditions (temperature and amount of rainfall) that contributed to the abundance of *Aedes* population. In this study, a climate-dependent stage-structured model of the population of *Aedes aegypti* was constructed. It was found that the peak of infected cases of dengue fever was observed after about 4 weeks of the peak of mosquito abundance. Secondly, the transmission rates estimated from the SIR helped in studying how the basic reproduction number varied throughout the year 2008, instead of only one value for the whole year. Lastly, the one-stage and two-stage vector host epidemic models constructed and simulated. Their results were compared and the two-stage model gave a better representation of the actual dengue fever cases in Shah Alam for the year 2008.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah, The Beneficent and The Merciful, for showing me the right path and giving me strength to finish my study. Without His help, it would not have been possible for me to complete this study.

I would like to express my deepest appreciation to my main supervisor, Prof. Madya Dr. Harun Budin, who had guided and pushed me to the right direction. His valuable time spent in reading, commenting and giving ideas had strengthened the outcomes of this project. It was an honor being his student. I also owe my deepest gratitude to my co-supervisor, Prof. Madya Dr. Salemah Ismail for her valuable comments and suggestions. Without their help and guidance, this study would not have materialized.

I am also deeply grateful to the Universiti Teknologi MARA for allowing me to be on study leave for two and the half years. This leave had enabled me to concentrate on my studies. Special thank, also, to the management team of the Faculty of Computer and Mathematical Sciences from year 2008 - 2014, who had given me a lot of moral supports, which indirectly, had encouraged me to continue struggling. Advices and comments by my colleagues and friends had been a great help in my construction of ideas and arguments throughout my writing of this thesis.

A very heartfelt thank you also goes to the staff of Disease Control Unit, Ministry of Health Malaysia especially to its former head, Y.Bhg Datuk Dr Lokman Hakim Sulaiman (currently Deputy Director General (Public Health)) for his help in obtaining the data and his valuable information about the status of dengue fever in Malaysia.

Finally, my deepest and heartfelt appreciation goes to my husband and children for their patience and support in the duration of my study. Their prayers, understanding and encouragement gave me strength to finish this thesis.