UNIVERSITI TEKNOLOGI MARA

ENERGY EFFICIENCY IMPROVEMENT OF AN UNBALANCED ELECTRICAL DISTRIBUTION SYSTEM BASED ON THE CONSERVATIVE VOLTAGE REDUCTION IN TANDEM WITH THE OPTIMAL CAPACITORS PLACEMENT AND SIZING

MUHD AZRI BIN ABDUL RAZAK

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

December 2015

ABSTRACT

Energy efficiency can be achieved by means of minimizing the power losses with an adequate amount of energy utilized in an electrical distribution system. In this thesis, a detail analysis of energy efficiency of an electrical distribution system has been performed with an implementation of the conservative voltage reduction (CVR), and the optimal capacitor placement and sizing (OCPS). The differential evolution particle swarm optimization (DEPSO) is used to determine optimal location and sizing for the capacitors which in turn will improve the energy efficiency via energy consumption and power losses minimization. The pre-selection of busbar or locations is performed either based on the power-loss-index (PLI), randomly pre-selected location (RPL), or fixed pre-selected location (FPL). The DEPSO is designed based on the amalgamation of particle swarm optimization (PSO) and differential evolution (DE) that serves as a new mutation technique responsible to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. Further improvement of energy efficiency is attained through CVR perpetrated by changing the transformer tap setting to reduce and then retain the voltage magnitude at a certain level whilst ensuring stability of the electrical distribution system. In this study, the proposed technique of DEPSO developed in MATLAB[®] will hand over the solution of capacitor locations, size as well as transformer tap position to the SIMULINK[®] software. Later, the SIMULINK[®] software will perform the load flow solution and pass the results to MATLAB[®] software to be analyzed. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the pragmatic electrical distribution system of Sultan Salahuddin Abdul Aziz Shah (SSAAS) building in Shah Alam, Selangor.

TABLE OF CONTENTS

	Page
COMFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi

LIST OF TABLES	xii
LIST OF FIGURES	xvii
LIST OF NOMENCLATURE	xxiv
LIST OF SYMBOLS	xxvi

CHAPTER ONE: INTRODUCTION		
1.1	Background and Significance of Research	1
1.2	Problem Statement	4
1.3	Research Objectives	6
1.4	Scope of Work	7
1.5	Significant of Study	9
1.6	Organization of Thesis	10

CHA	PTEF	R TWO: LITERATURE REVIEW	12
2.1	Introduction		
2.2	2.2 Optimal Capacitor Placement and Sizing (OCPS) in Unbalanced		13
	Electr	ical Distribution System	
2.3	.3 Conservative Voltage Reduction (CVR)		16
	2.3.1	Implications in Implementing CVR	17
	2.3.2	Strategies in Implementing CVR	18
2.4	Volt/Var Optimization		18
2.5	Summary 2		

CHAPTER THREE: METHODOLOGY		21		
3.1	Introd	uction		21
3.2	2 Design of Three-Phase Unbalanced Electrical Power Distribution Mode		-Phase Unbalanced Electrical Power Distribution Model	22
	in Matlab [®] and Simulink [®] Softwares			
	3.2.1 Data Conversion of Cable Length3.2.2 Phase Impedance Matric to Sequence Impedance Matric			24
				25
	Conversion			
	3.2.3	Designing	g Electrical Component Models in SIMULINK [®]	31
		Software		
		3.2.3.1	Busbar model embedded with the voltage and current	31
			(V/I) measurement tools	
		3.2.3.2	Distribution line or cable impedance	32
		3.2.3.3	Three-phase load model embedded with the voltage	33
			and current (V/I) measurement tools	
		3.2.3.4	Single-phase harmonic injection model	34
		3.2.3.5	Individual electrical equipment and component	35
	3.2.4	Harmonio	e Data Conversion	35
	3.2.5 Measurement and Extraction of Electrical Parameters from		37	
	SIMULINK [®] Model			
		3.2.5.1	Total harmonic distortion (THD) measurement using	38
			goertzel algorithm toolbox	
		3.2.5.2	Total Power Losses Calculation	41
3.3 Designed of Elec		ned of Ele	ctrical Distribution System of Sultan Salahuddin Abdul	42
	Aziz S	Shah (SSA)	AS) Building	
	3.3.1	Preparati	on of Data for The Unbalanced Electricity Distribution	43
		System in	n The Building of the Sultan Salahuddin Abdul Aziz	
		Shah (SS	AAS)	
		3.3.1.1	Riser cable impedances	45
		3.3.1.2	Real and reactive power load selection	46
		3.3.1.3	Harmonic data	48
3.4	Pre-Se	election Te	chniques of Capacitors Placement	50
	3.4.1	Methodo	logy of Pre-Selected Locations for Capacitor Based	51
		Power Lo	oss Index (PLI)	

	3.4.2	Methodology of Randomly Pre-Selected Locations for Capacitor	54
		(RPL)	
	3.4.3	Methodology of Fixed Pre-Selected Locations for Capacitor	56
		(FPL)	
3.5	5 Conservative Voltage Reduction (CVR) Technique		
	3.5.1	Important Actions and Precautions to be Considered Before The	62
		Implementation of CVR to An Electrical Distribution System	
3.6	Particl	es Swarm Optimization (PSO) Technique for The Optimal	64
	Capac	itor Placements and Sizing	
3.7	Amalg	gamation of Differential Evolution Approach with Particle Swarm	83
	Optim	ization (DEPSO) Technique for Optimal Capacitor Placements	
	and Si	zing	
3.8	Pragm	atic Implementation Of Conservative Voltage Reduction	88
	3.8.1	Design, Schematic Diagram and Operation of the Capacitor Unit	98
		Installed in Unbalanced Electrical Distribution System of	
		SSAAS Building	
	3.8.2	Switching of the Discrete Capacitors Size	98
	3.8.3	Physical Design of Capacitor Bank Compartment	99
	3.8.4	Diagram and the Operation of the Switched Capacitor Bank	101
3.9	Summ	ary	102
CHA	APTER	FOUR: RESULTS AND DISCUSSION	105
4.1	1 Introduction		105
4.2	Description of The Test Systems		107
	4.2.1	Configuration of IEEE 13-Bus Unbalanced Electrical	107
	Distribution System		
		4.2.1.1 Results for the IEEE 13-Bus Unbalanced Distribution	111
		System During Base Case Unbalanced Load Flow	
		Solution	
	4.2.2	Unbalanced Electrical Distribution System of Sultan Salahuddin	113
	Abdul Aziz building (SSAAS) Building		