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ABSTRACT 

This paper offers a new strategy to improve accuracy on deformation field of 
linear 4-node tetrahedral finite elements (FE) commonly used in computer aided 
engineering (CAE) software by means of virtual mesh refinement (VMR). Here, 
the improvement is achieved by embodying additional virtual strain energy to 
the FE instead of using physical mesh refinement in particular domains. In this 
early development only total strain energy of elements in the domains after 
simulation is used to assess convergence during the VMR process. Finally, two 
benchmarking studies, i.e., classical cantilever beam and thin shell torsion, 
are used to test the ability of the method to solve shear dominated problems in 
large and small deformation, respectively. From the studies, improvements in 
the deformation accuracy by order of 200% are observed. 

Keywords: Tetrahedral, finite elements, VMR, strain energy, convergence 

Introduction 

Nowadays, computer aided engineering (CAE) software relied on finite element 
method (FEM) has been considered as one of the best tool to achieve optimum 
design processes and parameters in particular for mechanical equipments or 
machine elements, as described in [1] for instance. Based on this fact, it has been 
major interest to FEM researchers to continuously increase its capability and 
robustness for the designers especially for them with less experience in FEM. 
Furthermore, as computer memory and speed will increase in the future, solid 
elements representing solid modeling approach will be used more frequently 
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for their more realistic appearances than dimensionally reduced elements, e.g., 
beams, plates or axissymmetry elements. 

To the best of author knowledge most of CAE software in the market 
offer auto meshing technique in FEM discretization for direct solid modeling. 
For complex geometries, it is often associated with an option to use tetrahedral 
finite element through domain in interest. Two tetrahedral elements commonly 
found herein are linear element with 4-nodes and quadratic element 10-nodes. 
The linear element is well known for its simpler formulation for programming 
implementation than the quadratic one however it has drawback to lock 
deformation shape to linear only. Hence, to successfully solve problems 
involving bending and stress concentration one needs very large number of these 
elements. On the other hand, by using the quadratic element both of problems 
can be easily solved as described by [2], for instance. 

Since formulation of the linear tetrahedral element is often known to 
obtain faster computational time than the quadratic one, many techniques 
to improve accuracy of its deformation behaviour have been developed by 
several authors. A technique called mixed enhanced which is applicable for 
both small and large deformation in particular for incompressible continua has 
been developed in [3]. Relied on deformation based 4-node tetrahedral element, 
Payen and Bathe in [4] have shown that stress distribution on that element 
can be improved without modification in the deformation accuracy itself but 
using the nodal point force (NPF) based stresses method. Some recent articles 
regarding the improvement are relied on the popular smoothed method proposed 
by [5], non-conforming formulation with a special shape function on finite 
element space in [6], interpolation cover scheme [7] and the Petrov-Galerkin 
method [8]. Unfortunately, the aforementioned formulations and methods as 
well as other similar approaches are mathematically difficult to most of CAE 
engineers because they involve abstract mathematical analysis and definition. 
Thus, requirement on more intuitive approach to improve the accuracy of the 
element is of particular interest. 

This work offers a novel approach to fulfill such demand namely virtual 
mesh refinement (VMR) method. Instead of relying on rigorous mathematical 
expression as the predecessors, it basically uses numerical experiments 
to capture behaviour of the tetrahedral element under specified boundary 
condition. The experiment is inspired by common physical mesh refinement 
on a domain which yields strain energy increment for smaller mesh sizes. If 
tetrahedron volume is considered as representation of such domain, its strain 
energy increases depending on number of element used and independent to 
applied boundary conditions. Here, the increment is then virtually incorporated 
to original formulation of the linear element to properly modify its particular 
deformation behavior. For the experiment, only the Total Lagrange formulation 
with additional pressure degree of freedom or mixed u/p formulation is used 
either for small or large deformation. 
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The latest formulation has been known for its capability to avoid 
volumetric locking in fully incompressible and nearly incompressible materials. 
It has been first developed by [9] for dimensionally reduced element with three-
dimensional stress state, i.e. plain strain and axissymmetry elements, but not for 
the linear tetrahedral elements. The formulation states that shear deformation 
is considered as independent variables from the influence of hydrostatics or 
volumetric pressure. Therefore, in case of high bulk modulus K obtained shape 
changing due to shear will not be locked by such pressure. 

This article consists of five sections including this section. Section 
2 describes theoretical basis of strain energy used in this work in order to 
characterize energy convergence criteria with respect to mesh size. Bringing 
the criteria to the linear element will result in the VMR. Next, Section 3 discuss 
on implementation of algorithm to tackle auto VMR method. Furthermore, 
the algorithm is validated in Section 4 using classical benchmarking problems 
namely cantilever beam and shell torsion with discussion on the results. Finally, 
Section 5 outlines reviews on the VMR based on the results from Section 4. 

Mesh Refinement on Tetrahedron Volume 

To start with, an in-house nonlinear finite element solver has been developed 
using FORTRAN and the G95 Compiler [10] with additional interfaces for pre-
and post-processing in the Gmsh [11]. The solver solves simultaneously residual 
equations ru and r of the mixed u/p formulation [9] over tetrahedral element 
volume V under the Cartesian coordinate system x denoted by 

rdvT 

v dx 
r» = tF[T-PJC_1]dV-fext (« 

"(J-I)-H r p dV (2) 

where v, F, T and f , are defined as 9x1 virtual deformation vector, 9><6 
' ' ext 

deformation gradient matrix, 6x1 deviatoric 2nd-Piola Kirchoff stress in the 
Voigt notation and external forces, respectively. While the unknown 9x1 vector 
of the inverse right-Cauchy deformation C_1 is evaluated at tetrahedral nodes, 
additional pressure variable p is computed for one extra node at the tetrahedral 
centroid. Material compressibility J is measured using J = ^/det C where special 
case of J = 1 means fully incompressible behavior imposed during material 
deformation. In order to find solutions of nonlinear Equations (1) and (2), the 
full Newton-Raphson iterative scheme with load and deformation control is 
implemented in the solver. 
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Meanwhile, internal or strain energy W over the volume of tetrahedral 
is given as 

W(E)=-JETCTEdV (3) 
^ v 

where E and CT are the Green-Lagrange strain and tangent stiffness of the 
Mooney-Rivlin hyperelastic model, respectively. In case of the mixed u/p 
formulation, additional pressure variable p can be considered in Eq. (3) as 

W ( E ) = - j E T ( C T E - p J C - 1 ) d V . (4) 
* v 

Tetrahedron volume used here is a part of six tetrahedral which build a 
hexahedral volume with unit length as shown in Figure 1. Since development of 
this method is still ongoing, this work is merely intended to discuss underlying 
fundamental idea and to leave the influence of arbitrary tetrahedral configuration 
for future research. The volume in Figure 1 is then discretized with tetrahedral 
elements for different number of elements, i.e., 1, 9, 28, and 533. Single force 
is applied to node 4 (see Figure 1 for its exact location) in specified direction 
with the remaining nodes fixed. 

The force direction is made intuitively for both parallel and perpendicular 
with respect to triangular plane formed by the constrained face. With N and 
i denoting number of element used and its index in different refinement step, 
respectively, a new parameter rvi is defined with respect to the 1 element mesh 
to form relationship ry. = N./N,. 

(a) (b) 

Figure 1: Tetrahedron volume (a) used as the meshed refinement domain is a 
part of a cube (b) consist of six tetrahedral volumes 
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Deformation shape of the tetrahedron volume after simulation can be 
seen in Figure 2. Here, the corresponding strain energy W. on each refinement 
step i are normalized with respect to the energy of 1 element, i.e., rwi = W./W15 

to obtain a power law relationship as shown in Figure 3. 

(a) (b) 

Figure 2: Deformation behaviors of tetrahedron volume with different 
number of tetrahedral elements used from 1 in (a) to 533 (d). Not 

surprisingly, a local effect at the loaded node is clearly shown which 
indicates nonlinear shape function is necessary 

Due to difficulties in real problem to determine exactly whether 
tetrahedral elements in consideration tends to behave as the above loading 
scenario or not, the best choice for approximation in Figure 3 will be optimized 
simply by considering the power equation 

rwi = arvi (5) 

where a and b can be determined by finite element convergence criteria. This 
issue will be discussed in the following section. 
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Figure 3: Power law relationship between strain energy ratio rwi and ratio of 
number of element used rvi for three different loading scenarios, i.e. force in 

direction of global x-, z-, and 45° on plane parallel to xy-plane 
(see Figure 1(a) for the coordinate system) 

Furthermore, rwi is then used to reduce tangent stiffness on Newton-
Raphson linearization scheme for each tetrahedral expressed in (1) and (2) as 

rdvT 

ru=rwJ—FfT-pJC^JdV-f^ 
5x 

(6) 

= - r w i | ( j - l ) + ^ dV. (7) 

Both equations explain that using the equal external energy and requesting 
rWi < 1 larger deformation field u must be exist to maintain the corresponding 
internal energy equal to the external one. Hence, they indicate also a refinement 
process without additional degree of freedom or simply called "virtual mesh 
refinement" compared to what observed in common mesh refinement process, 
i.e., by adding "physical" element to arbitrary domain. 

Auto Virtual Mesh Refinement (VMR) 

Through this section an algorithm to tackle automatic VMR based on result in the 
Section 2 will be presented. In the sense of adaptive analysis or refinement tasks 
in FEM, an advantage of implementing VMR is apparent because working on 
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re-meshing domain of interest is not necessary anymore. The advantage can be 
achieved by developing special algorithm which can detect convergence behavior 
from criteria in demand, e.g., global strain energy or local stress concentration, 
in order to avoid deformation field running into overestimating results. This 
issue is important because finite element solutions are always necessary to be 
bounded by their respective analytical or continuous solutions. 

In this work, the algorithm is developed based on the convergence criteria 
of global strain energy per-volume in domain of interest. For each element in 
the domain, normalized strain energy W*nt with respect to its volume can be 
computed as follow 

W;(E)=S _ L _ 

2V 
jET(CTE-pJC_1)dV (8) 

where n and k denote element numbering and total number of element, 
respectively. In order to manage the algorithm obvious and simple three basic 
assumptions below must be noted, i.e.: 

a. 

b. 

Not all elements in a domain sense the imposed boundary condition similar 
to the simulation in Figure 2, i.e., having single node loaded and the 
remaining three are fixed. In fact, elements which are not restrained can 
not be considered to mimic the deformation shape in Figure 2. 
Since local deformation observed at node 4 (see Figure 1) may lead to the 
existing of local strain concentration and the remaining larger domain is free 
from it, different function r^r^) to drive convergence process must be defined 
(see Figure 4) to avoid overestimate results with respect to the analytical 
solution. In order to find the function these rule below are applied 

o r*»* 1.035 r^** 

$m 

Figure 4: Three different values rwi as functions of rvi which represent 
different possible reduction of rwi due to different actual condition 

of each element in domain 
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i. rw. = 1.01 lrvf
16 is related to rwi = (W/W^173 

ii. rw. = 1.017rvf
24 is related to rwi = (W/Wj)172 

iii. rwi = 1.035rvf
49 is related to rwi = (W/Wt). 

The power of 1/3, 1/2 and 1 in rwi are chosen merely based on regularity 
and not derived by rigorous mathematical analysis. While the rule (iii) is used 
for the elements in the area which sense high stress concentration, the rule (ii) 
and (i) are dedicated for other location in the domain with relatively close and 
far away from the area, respectively. 

With rwi(rvi) in hand, (6) and (7) can be solved using Newton-Raphson 
scheme. 

Finally, the algorithm implemented in this work can be seen in Figure 5 
where the convergence criteria is based on W* by considering equation 

AW"= V o o -005 (9) 

pre
processing 

S»1 
compute rVl 

selective element strain 
energy correction by rWi 

running FEM solver 

compute total strain energy for 
the last load increment 

Figure 5: Algorithm of the auto VMR 
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Numerical Experiments: Cantilever and Shell Structures 

In order to study accuracy of the proposed method, two classical benchmarking 
cases with their existing analytical solutions, i.e., large deformation in cantilever 
beam [12] and shell with torsional load [13], are introduced here as shown 
in Figure 6. It is widely known that using linear 4-node tetrahedral for such 
cases is not recommended due to over-stiff responses. While the first case is 
mainly dedicated to show capability of the proposed method in capturing large 
deformation shape, the second one is aimed to show the capability in small 
deformation for thin shell structures. 

At the first case, the cantilever beam with rectangular cross section 
0.15 m x 0.1m and length of 10 m is loaded by 281.4 N forces at its tip 
perpendicular to the length. Since large deformation is the main consideration 
here, the Kirchoff-Venant hyperelastic material model is used with modulus 
elasticity E = 100 MPa and the Poisson ratio v = 0. Two different bounds on the 
internal strain energy are implemented herein (see Table 1). Results from the 
simulation and benchmarking process are shown in Figure 7 where the existing 
analytical solution for the same case by [12] is used as the reference solution. 

(a) (b) 

Figure 6: Two benchmarking cases used in this work, i.e., (a) cantilever beam 
and (b) thin shell with torsional loading (b). Both of them are meshed with 

4-node tetrahedral element and fixed at the opposite of loading sides 

As predicted, the criteria 1 yields good result and improves the non-VMR 
solution very much with respect to the analytical solution as shown in Figure 7a 
for its deformation shape and Figure 7b for load-deformation curve. Contrary to 
this, the criteria 2 overestimates the analytical solution by significant order of 
magnitude and leaves problem with analytical bounded requirement. Moreover, 
the area between both curves indicates possibility to find optimum criteria to 
find better approximation to the analytical solution. 

^ ^ ^ r ^ ^ 
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Table 1: Convergence stop criteria 

rw 

= 1.011c?16 

Vi 

= 1.017 r"024 

Vi 

= 1.035 r-f49 

Criteria 1 

W* 
0 < — r ^ — < 0 . 5 

(Wint) 
max 

0.5 < — ^ — < 0 . 8 
(Wmt) 

max 

W* 
0.8 < — ^ — <1 

(w:j 
max 

Criteria 2 
(only for cantilever) 

0 < ^— < 0.01 
(Wint) 

max 

w* 
noi < mt ^ o i (Wlnt) 

max 

01 ^ int ^1 
\J. 1 <v <v 1 

(w inl) 
max 

In the second case, a thin shell with length of 2 mm, width of 1 mm 
and 0.05 mm thickness is loaded with 1 N force acting coupled to form pure 
torsion. Material used here is the Kirchoff-Venant with E = 5851851 MPa and 
v = 0.46. Only the criteria 1 is used here to obtain convergence result. In this 
small deformation case, the auto VMR has improved the tip deformations very 
much at the 0.0032 mm (see Figure 8) compared to the same solution using non 
VMR, i.e., 0.00129 mm. However, it still fails to capture the analytical solution 
of 0.0055 mm [13] in acceptable percentage (in this case less than 5%). Hence, 
similar to the first case, it is apparent that the criteria 1 in Table 1 is not the 
optimum one to which elaboration to this is still demanding. Better accuracy 

(a) (b) 

Figure 7: Deformation shape of the beam after simulation using the criteria 1 
(a) with the corresponding deformation-load curves for the criteria 

1 and 2, analytical solution [12], and non VMR (b) 

28 



Accuracy Improvement for Linear Tetrahedral Finite Element 

deformation (1) Y 

0 0.00181 0.00322 j\ 

Figure 8: Result for the shell torsional simulation with its 
deformation from the auto VMR 

can be done by applying rwi = 1.035 r~°49 for more elements by changing the 
interval for the W*, /(W*) , for instance. 

int v int'max' 

Concluding Remarks 

In this work, a promising strategy namely auto virtual mesh refinement (VMR) 
to improve accuracy of linear 4-nodes tetrahedral element used in CAE has been 
proposed. In the large deformation cantilever beam problem it has produced 
improvement of almost 200% in the deformation compared to the same element 
with non-auto VMR. Moreover, in case of small deformation in the shell 
structure stipulated by torsional coupled forces, it has also improved deformation 
significantly to almost 200% from the non-auto VMR solution. Hence, from both 
classical problems where the 4-node linear tetrahedral element is known to have 
very stiff responses indicate further potential implementation of the underlying 
idea of the auto VMR method. Finally, according to the benchmarking with the 
analytical solutions optimum criteria to control convergence behavior of the 
auto VMR is necessary to be determined. This can be a challenging topic for 
further research objectives. 
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