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ABSTRACT 

 

A refined theory is successfully extended in this study for critical buckling 

loads of rectangular, symmetrically-laminated plates, including curvature 

effects. The theory accounts for a quadratic variation of the transverse shear 

strains across the thickness, and satisfies the zero traction boundary 

conditions on the top and bottom surfaces of the plate and avoids the need of 

shear correction factors. The numerical results are presented for critical 

buckling loads for orthotropic laminates subjected to biaxial inplane loading. 

Using the Navier solution method, the differential equations have been solved 

analytically and the critical buckling loads presented in closed-form 

solutions. The significant effects of curvature terms on buckling loads are 

studied, with various loading conditions and thickness-side ratio. Some exact 

buckling solutions for simplified cases with and without the inclusion of 

curvature terms are obtained and compared with results available elsewhere 

in literature. 

 

Keywords: Buckling, Symmetrically-laminated, Refined Theory (RT), 

Curvature Effects. 
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Nomenclature 
 
x, y, z Directions of Cartesian coordinate system 

u, v, w In-plane displacements 

wb and ws Bending and shear components of transverse 

displacement, respectively 
a, b Plate length and width, respectively 

h Plate thickness 

E1 and E2 Young’s moduli along and transverse to the fibre, 

respectively 
G12 , G23 and G13   In-plane and transverse shear moduli  

v12 and v21 Poisson’s ratios along and transverse to the fibre, 

respectively 

k Number of layers 

Qij Plane stress reduced elastic constants in the material 

axes of the plate 

ijQ  Transformed material constants 

s

ij

s

ijij

s

ijij HDDAA ,,,,  Plate stiffness 

j

s

i

b

i QMM ,,   

(i=x,y,xy & j=xz, yz) 
Resultants moments, shear forces, respectively 

000 ,, xyyx   In-plane stresses  

Nl

xy

Nl

y

Nl

x  ,,  Second order strain  

U Strain energy of the plate 

V Potential energy of the plate 

V1 In-plane force terms 

V2 Curvature terms   

N Force per unit length  

ξ Load parameter 

N  Critical buckling factor 

Ncr Critical buckling Load  

Lij Linear operators  

cc Scalar indicator of curvature terms 

m, n Number of half waves in the x- and y-directions, 

respectively 

 
Introduction 
 
The advancement of technology in the search of structural materials with 

high specific strength and stiffness properties has resulted in the application 

of laminated composites in aerospace and transportation industries. The 
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increasingly wider application to other fields of engineering has necessitated 

the evolution of adequate analytical tools for the better understanding of the 

structural behaviour and efficient utilization of the materials. 

Recently, Khalili et al [1] studied the buckling analysis of the 

sandwich plates for the general cases of the problem and the analytical exact 

solutions using a simple and fast computational code. Moita et al. [2], finite 

element model is presented for buckling and geometrically nonlinear analysis 

of multilayer sandwich structures and shells, with a soft core sandwiched 

between stiff elastic layers. Ruocco [3] examined the influence of the 

nonlinear Green–Lagrange strain tensor terms on the buckling of orthotropic, 

moderately thick plates by the Mindlin hypotheses. Raju et al [4] studied the 

buckling and postbuckling of variable angle tow composite plates under in-

plane shear loading. Kazemi [5] proposed a new method for calculating the 

critical buckling load has been developed based on the polar representation of 

tensors. This method can help to analyze the influence of anisotropy on the 

buckling behavior of simply supported rectangular laminated plates subjected 

to biaxial compression, thus avoiding the complexities associated with the 

Cartesian formulation. Chalak et al [6] proposed a new plate model is 

proposed for the stability analysis of laminated sandwich plate having a soft 

compressible core based on higher-order zig-zag theory. Kumar et al [7] 

presented the design of a graded fiber-reinforced composite lamina and 

graded laminates with an objective of reduced inter-laminar stress-

discontinuity in composite laminates. Thai et al [8] presented the novel 

numerical approach using a NURBS-based isogeometric approach associated 

with third-order shear deformation theory (TSDT) is formulated for static, 

free vibration, and buckling analysis of laminated composite plate structures. 

Rachchhet al. [9] studied the Effect of red mud filler on mechanical and 

buckling characteristics of coir fibre reinforced polymer composite. Bohlooly 

and Mirzavand [10] studied Buckling and postbuckling behavior of 

symmetric laminated composite plates with surface mounted and embedded 

piezoelectric actuators subjected to mechanical, thermal, electrical, and 

combined loads. Venkatachari et. al. [11] examined buckling characteristics 

of curvilinear fibre composite laminates exposed to hygrothermal 

environment. The formulation is based on the transverse shear deformation 

theory and it accounts for the lamina material properties at elevated moisture 

concentrations and thermal gradients. Kumar et. Al. [12] proposed a new 

lamination scheme is through the design of a graded orthotropic fiber-

reinforced composite ply for achieving continuous variations of material 

properties along the thickness direction of laminated composite plates. 

In the past three decades, researches on laminated plates have received 

great attention, and a variety of plate theories has been introduced based on 

considering the transverse shear deformation effect. The classical plate theory 

(CPT), which neglects the transverse shear deformation effect, provides 



Mokhtar Bouazza, Abdelaziz Lairedj & Noureddine Benseddiqd 

 

42 
 

 

reasonable results for thin plate [13-15].The Reissner [16] and Mindlin [17] 

theories are known as the first-order shear deformation plate theory (FSDT), 

and account for the transverse shear effect by the way of linear variation of 

in-plane displacements through the thickness. There are many two 

dimensional theories that have been proposed to account for the shear 

deformation of moderately deep structures and highly anisotropic 

composites. Reddy [18] proposed a parabolic shear deformation plate theory. 

Touratier [19] proposed a trigonometric shear deformation plate theory where 

the transverse strain distribution is given as a sine function. Soldatos [20] 

proposed a hyperbolic shear deformation plate theory. Aydogdu [21] 

presented a new shear deformation theory for laminated composite plates. 

Therefore, Lee et al. [22] proposed a higher-order shear deformable theory 

using the similar approach of representing transverse displacement using two 

components. Recently, Shimpi [23] has developed a new refined plate theory 

which is simple to use and extended by Shimpi and Patel [24,25] for 

orthotropic plates. 

To the best of authors’ knowledge, there are no research works for 

mechanical buckling analysis of laminated plates based on new refined 

theory including curvature effects. In this work, the effect of curvature terms 

on the buckling analysis of symmetrically-laminated rectangular plates 

subjected to biaxial inplane loading has been investigated using the refined 

theory and Navier solution. The formulation theory accounts for the shear 

deformation effects without requiring a shear correction factor. Number of 

unknown functions involved is only two, as against three in case of simple 

shear deformation theories of Mindlin and Reissner and common higher-

order shear deformation theories. Governing equations have been developed 

for determining critical buckling loads of rectangular, symmetrically-

laminated plates, including transverse shear deformation and curvature 

effects. Using the Navier solution method, the differential equations have 

been solved analytically and the critical buckling loads presented in closed-

form solutions. The sensitivity of critical buckling loads to the effects of 

curvature terms and other factors has been examined. The analysis is 

validated by comparing results with those in the literature. The basic 

equations of plane problem and the general solution for mechanical buckling 

of laminated plate including curvature effects are given in Section 2. The 

numerical examples are given in Section 3 and a summary is given in Section 

4. 

 

Theoretical Formulation  
 
Buckling of symmetric, anisotropic laminates plates 
The displacement field, which accounts for parabolic variation of transverse 

shear stress through the thickness, and satisfies the zero traction boundary 
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conditions on the top and bottom faces of the plate, is assumed as follows 

[22,23]: 
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where 
bw  and 

sw  are the bending and shear components of transverse 

displacement, respectively; and h is the plate thickness. The kinematic 

relations can be obtained as follows: 
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Constitutive equations 

Under the assumption that each layer possesses a plane of elastic symmetry 

parallel to the x–y plane, the constitutive equations for a layer can be written 

as 

(3) 

(1) 

(2) 

(1) 

(2) 

(3) 
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Transforming the above equations of an arbitrary k layer in local 

coordinate system into the global coordinate system, the laminate constitutive 

equations can be expressed as 
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where usual notations for normal and shear stress components are adopted. 

The relationship of the global reduced stiffness matrix 
ijQ  can be referred to 

any standard texts such as [26, 27]. 

 

Governing equation  
The strain energy of the plate is calculated by 
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Substituting Eq. (2) into Eq. (7) and integrating through the thickness of the 

plate, the strain energy of the plate can be rewritten as 
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From Eq. (9), one can obtain the following equations: 
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Substituting Eqs. (10) - (12) and (3) to Eq. (8), the strain energy per 

unit area, U, due to the buckling deformation is of the form 
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The potential energy of the plate fiat of volume is 
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Denoting conventional inplane force terms by 
1V and “curvature” terms by 

2V , then after combining Equations (15)-(17) and (18) we find that 
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In addition 
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In order to put the integral in Equation (21) in a useful form for 

heterogeneous plates, we utilize the constitutive relations for the inplane 

loading of a symmetrically-laminated plate [30, 31] 
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Combining Equations (25) and (27), we find that 
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Taking into account Equations (28) and (29), the “curvature” terms, Equation 

(21), are of the form 
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Governing equations can be obtained by applying the variational relationship 
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Exact solutions of mechanical buckling for symmetric cross-ply plates 

Consider a rectangular plate with the length a, and width b which is subjected 

to in-plane loads. Therefore, the pre-buckling forces can be obtained using 

the equilibrium conditions as [32, 33] 

 

 00,, 000  NNNNNN xyyx   

 

Where N the force per unit length is,  is the load parameter which indicate 

the loading conditions. Negative value for   indicate that plate is subjected 

to biaxial compressive loads while positive values are used for tensile loads. 

Also, zero value for    show uniaxial loading in x directions, respectively. 

The exact solutions of equations (32) and (33) for simply supported, 

symmetric cross-ply rectangular plates may be obtained by recognizing the 

following plate stiffness to have zero values 

 

0
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By following the Navier solution procedure, the solutions to the problem are 

assumed to take the following forms 
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where 
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Substituting Equation (36) into Equation (32) for a symmetric cross-ply 

laminate, we obtain the following equations 
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where cc  takes on the value 1 when the “curvature” terms are included in the 

analysis and is 0 when these terms are neglected. 

After substituting the Eq. (36) into Eqs. (38) and (39) we get a systems 

of two equations for finding the 
mnbW and 

mnsW . By equaling the determinant 

of coefficient to zero we have: 
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Numerical Examples  

 
Several examples are solved to demonstrate the accuracy and efficiency of 

the method. In the examples considered, symmetric cross-ply, angle-ply and 

quasi-isotropic thick rectangular laminates are considered and the following 

material properties are assumed [29]: 

 

55.0,3.0,323.0,533.0,14 121222321221  EGEGEE
 

 

Two different cases have been considered in the numerical study: (1) 

without the effects of curvature terms and (2) with the effect of curvature 

terms. Note that Case 1 is the conventional consideration of thick plate 

buckling, which forms the basis of comparison for the case (2). Algorithm 

used to do the numerical analysis: 

A general iterative procedure for obtaining the buckling load N, is as 

follows: 

 The effects of curvature terms are ignored, thus, 0cc ; c1 and 

31, iai , are calculated. Substitute c1 and ia , into matrix in 

Equation (40). For nontrivial solution of the critical buckling load crN , 

the determinant of the matrix in Equation (40) must be equal to zero. 

 The effects of curvature terms are included, thus, 1cc ; c1 and 

31,, iba ii , are calculated. Substitute c1 and ii ba , , into matrix in 

Equation (40). For nontrivial solution of the critical buckling load crN , 

the determinant of the matrix in Equation (40) must be equal to zero. 

(41) 
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 Note that since m, n = 1, 2, . . . ,, there is an infinite number of 

buckling loads N. The critical buckling load crN is the minimum 

positive real solution with respect to m and n. 

 

In order to verify the present code, the buckling problem of a simply 

isotropic square plate ( = 0.30) under uniaxial compression is studied in 

Table 1. The numerical results are compared with analytic results of Reddy 

[34] and strain finite element formulation incorporating a third-order 

polynomial displacement model results of Nayak [35]. It shows that the 

present results are compared well with those of the previous works. 

 

Table 1: Comparisons of critical buckling factor DaNN xx

22   for simply 

supported square isotropic plates under uniaxial compression. 

 

Source 
a/h 

5 10 20 50 100 

Nayak [35] 

Reddy [34] 

Present 

3.2656 

3.2653 

3.2653 

3.7867 

3.7865 

3.7866 

3.9445 

3.9443 

3.9444 

3.9901 

3.9909 

3.9910 

3.9939 

3.9977 

3.9977 

 

The results of critical buckling load of simply supported square cross-

ply laminated composite plates [0°/90°/90°/0°] plate are presented in Tables 

2 and 3 and Figs. 1 and 2. In Tables 2 and 3, the critical buckling factor 

 2

32 / EhaN cr
 for simply supported square cross-ply laminated composite 

plates [0°/90°/90°/0°], under biaxial buckling and under in-plane combined 

tension and compression, respectively for different values of thickness-side 

ratio (a/h= 5, 10, 15, 20, 25,30). The material and geometry of the square 

plate considered here are [18]. These results are compared with the results 

found by Whitney [29] using first-order shear deformation theory. As seen a 

very good agreement has been achieved between them. Tables 2 and 3 also 

show that, the critical buckling factor increases with increase in the 

thickness-side ratio a/h. A comparison of Table 2 with Table 3 shows that the 

critical buckling load for the plate subjected to compression along x-direction 

and tension along y-direction, is greater than the corresponding values for the 

plate under biaxial compression. On the other hand, if the effect of curvature 

terms is included (Case 2), the buckling factors are always lower than those 

in Case 1. This appears to be academic, however, as the results in Tables 2 

and 3show that the curvature terms have little practical effect on the critical 

buckling factor for the laminate geometries considered. 
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Table 2: Comparisons of critical buckling factor  2

32 / EhaN cr
 for simply 

supported square cross-ply laminated composite plates [0°/90°/90°/0°], under 

biaxial buckling. 

 

a/h 

Source 

FSDT [29] 

Cc=1 

Present 

Cc=1 

FSDT[29] 

Cc=0 

Present 

Cc=0 

5 

10 

15 

20 

25 

30 

CPT 

3.5837 

5.7459 

6.5213     

6.8509 

7.0163 

7.1100 

-------- 

3.9629 

6.0188 

6.6801 

6.9500 

7.0830 

7.1576 

-------- 

3.6706 

5.8112 

6.5605 

6.8758 

7.0332 

7.1221 

7.3335 

4.0417 

6.0853 

6.7201 

6.9752 

7.1000 

7.1697 

7.3335 

 

Table 3: Comparisons of critical buckling factor  2

32 / EhaN cr
 for simply 

supported square cross-ply laminated composite plates [0°/90°/90°/0°], under 

in-plane combined tension and compression. 

 

a/h 

Source 

FSDT [29] 

Cc=1 

Present 

Cc=1 

FSDT[29] 

Cc=0 

Present 

Cc=0 

5 

10 

15 

20 

25 

30 

CPT 

10.4425 

26.7192 

38.0402  

44.7934 

48.8479  

51.3908 

--------- 

11.5465 

28.2716 

39.3715 

45.8088 

49.6117 

51.9739 

--------- 

10.9050 

27.4733 

38.8042 

45.4372 

49.3608 

51.7962  

58.3586 

11.7515 

28.9051 

40.1032 

46.4447 

50.1229 

52.8792 

58.3586 

aMode (1,2) 

 

It should be noted that the present theory involves only two 

independent variables as against three in the case of first-order shear 

deformation plate theory [29]. Also, the present theory does not required 

shear correction factors as in the case of first-order shear deformation plate 

theory. It can be concluded that the present theory is not only accurate but 

also efficient in predicting critical buckling load of laminated composite 

plates. 
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Figure 1:  A comparison on buckling responses including curvature effects 

and effect of shear deformation of   simply supported square cross-ply 

laminated composite plates [0°/90°]s subjected biaxial compression with 

those of reported in [29]. 
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Figure 2:  A comparison on buckling responses including curvature effects 

and effect of shear deformation of   simply supported square cross-ply 

laminated composite plates [0°/90°]s subjected Biaxial compression and 

tension with those of reported in [29]. 
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Figure 3: The effect of curvature terms on critical buckling factor of simply 

supported square plate under uniaxial compression. 

 

Buckling factors are plotted against aspect ratio for plates under 

uniaxial compression in Figure 3. If only the effect of curvature terms (Case 

2) is included, the buckling factors are always lower than those in Case 

1.Comparing Figs 1,2 and 3, the responses are very similar, however, the 

nondimensional critical buckling load of plate under uniaxial compression  is 

greater than that under biaxial compression and less than that under biaxial 

compression and tension. In addition, the inclusion of curvature terms 

decreases the buckling factor no matter what loading condition is applied. 

  

Conclusions 
 
In this work, buckling analysis of symmetrically-laminated rectangular plates 

is investigated. In order to consider the curvature effects, refined two-

parameter theory and Navier solution method are used. The present theory 

has only two unknowns, but it accounts for a parabolic variation of transverse 

shear strains through the thickness of the plate, without using shear correction 

factor. Buckling of orthotropic laminates subjected to biaxial inplane loading 

is investigated. Based on the numerical and graphical results it is concluded 

that the theory is in good agreement with other higher-order shear 

deformation theories while predicting the critical buckling response of 

laminated composite plates. Also, it is observed that, the inclusion of 

curvature terms decreases the buckling factor no matter what loading 

condition is applied. In conclusion, it can be said that the proposed theory is 
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accurate and efficient in predicting the buckling responses of symmetrically-

laminated rectangular plates with allowance for the effects of higher-order 

strain terms (curvature terms).  
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