THE IMPACT OF UV-MODIFIED EPOXIDISED NATURAL RUBBER ON PMMA/ENR 50 BLENDS ELECTROLYTE FOR LITHIUM ION BATTERY

DISEDIAKAN OLEH :

DR FAMIZA ABDUL LATIF

APRIL 2011

PENGHARGAAN

Setinggi-tinggi penghargaan dan jutaan terima kasih di ucapkan buat semua pihak yang telah terlibat secara langsung atau tidak langsung dalam menjayakan penyelidikan ini dengan sempurna.

Diantaranya :

Prof Dr Abu Bakar Abdul Majeed Penolong Naib Canselor (Penyelidikan) Research Management Institute (RMI)

En. Mustafar Kamal Hamzah Ketua penyelidikan S & T Research Management Institute (RMI)

Dan

Semua kakitangan Research Management Institute (RMI), Pn. Ruhaida Sabron, Pn Intan Syarinaz Mohd Nazhar, Pn Hanipah Mohd Yatim serta semua kakitangan makmal di Fakulti Sains Gunaan yang membantu dalam menjayakan penyelidikan ini.

ABSTRACT

This research focused on the development of a new thin film electrolyte based on Poly (methyl methacrylate) / Irradiated- 50% epoxidized natural rubber (iENR 50). Before the blending was carried out by solvent casting technique, the rubber was irradiated under UV light for 30 seconds (30iENR 50), 120 seconds (120iENR 50) and 600 seconds (600iENR 50) to reduce the number of inter-chain cross-linking of ENR 50. From the DSC analysis, it was found that the T_g of un-irradiated ENR 50 was reduced from -25°C to -26°C when it was irradiated for 30 seconds indicating that it has the highest chain flexibility as a result of breaking of the inter-chain crosslinking. Therefore, it can be concluded that it requires only 30 seconds of UV irradiation to heal the inter-chain cross-linking in the ENR 50 system. The reduction of the number of inter-chain cross-linking has been confirmed by the reduction of the intensity of the OH band at 3440-3424 cm⁻¹ followed by the increased in the intensity of the epoxy ring at 1255 cm⁻¹. When this 30iENR 50 was blended with PMMA, it produced the most flexible freestanding film as compared to un-irradiated and other irradiated ENR 50 systems. Furthermore, this PMMA / 30iENR 50 exhibited the highest conductivity of 1.03 X 10^4 S/cm due to the flexibility of the polymer chain and the formation of a less viscous phase that favor the migration of lithium ion in the blend matrix. The addition of PC plasticizer further enhanced the conductivity of the PMMA / 30iENR 50 / LiCF₃SO₃ electrolyte to 1.16 X 10⁻³ S/cm. The ionic conduction of the doped PMMA / 30iENR 50 system was found to obey the Arrhenius behaviour in which the migration of ions was thermally assisted. Interestingly, there were two activation energies (E_a) were observed from the doped PMMA / 30iENR 50 electrolytes in which the E_{a2} at higher temperature was less than E_{al} observed at lower temperature due to the change of the phase from crystalline to an amorphous phase at 70°C. This was confirmed from the DSC thermogram of the blend system. However, for the plasticized PMMA / 30iENR 50/ LiCF₃SO₃ electrolyte, the ionic conduction was due to the segmental motion of the polymer indicating that the presence of PC enhanced the mobility of the polymer.

TABLE OF CONTENTS

ABS	TRACT	Page
ACK	NOWLEDGEMENT	ii
TAR	LE OF CONTENTS	iii
LIST	OF TABLES	viii
LIST	OF FIGURES	x
LIST	OF PHOTOGRAPH	xvi
LIST	OF ABBREVIATIONS	xvii
LIST	OF SYMPOLS	xix
LIST	OF PUBLICATION	XX
CHAPTER 1 : INTRODUCTION		1
1.1	Polymer Electrolyte Background	3
1.2	Classification of polymer electrolytes	6
1.3	Preparation of polymer electrolytes	7
1.4	Surface Modification and Adhesion Improvement	8
1.5	Polymer Electrolyte Applications	12
1.6	Problem statements	12
1.7	Objectives	13
1.8	Research Scope	13

	1.8.1 Selection of materials	13
	1.8.2 Selection of material characterization	15
1.9	Expectations	15
1.10	Technical Challenge and Limitations	16
СНА	APTER 2 · LITERATURE REVIEW	17
2 1	Poly (methyl methografiete) (PMMA)	17
2.1		17
2.2	Epoxidised Natural Rubber (ENR)	22
2.3	The effect of UV irradiation on polymers	25
2.4	Material Characterization	26
	2.4.1 Physical and chemical properties	27
	2.4.1.1 Optical Microscopy	27
	2.4.1.2 Fourier Transform Infrared Spectroscopy (FTIR)	28
	2.4.1.3 Thermal Analysis	32
	a) Defferential Scanning Calorimetry (DSC)	32
	b) Thermogravimetric Analysis (TGA) and Deferential	36
	Thermogravimetric Analysis (DTG)	
	2.4.2 Electrical properties	38
	2.4.2.1 Conductivity Study	38
2.5	Mechanisms of Ionic Conduction	42
	2.5.1 Arrhenius behaviour	42
	2.5.2 Vogel – Tammam – Fulcher Equation: A Free Volume – Based	46
	Theory	