UNIVERSITI TEKNOLOGI MARA

DESIGN FOR MODULARITY OF BLENDED WING BODY (BWB) BASELINE II-E2 UNMANNED AERIAL VEHICLE (UAV)

MATZAINI BIN KATON

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Mechanical Engineering

July 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Matzaini Bin Katon
Student I.D. No.	:	2008331575
Programme	:	Master of Science
Faculty	:	Faculty of Mechanical Engineering
Title	:	Design for Modularity of Blended Wing Body (BWB) Baseline II-E2 Unmanned Aerial Vehicle (UAV)
Signature of Student	:	\sim
Date	:	July 2014

ABSTRACT

This thesis describes the strategy used for designing the structural modular layout for the Blended Wing Body (BWB) Baseline II-E2 Unmanned Aerial Vehicle (UAV) airplane. In order to give UAV more flexibility in terms of availability of flight mission, there was a need for a quick and ease of assembly and disassembly's process for the airframe. The goal of this research was to design a BWB modular airframe, focusing on the ease of airframe assembly and disassembly. Morphological Method and Pugh Method were used as the concept generation and evaluation tools in designing the BWB airframe. The BWB was divided into 5 main modules: wing-body module, starboard and portside module and, right-side and left-side canards module. CATIA, a Computational Aided Design (CAD) software was used to build the three dimensional (3-D) model of the airframe. MSC Patran/Nastran was used as the finite element (FE) analysis tool to analyze the BWB airframe static strength. Analysis was done focusing on the stress and deflections results. FE models for the airframe were developed in MSC Patran. CQUAD4, CTRIA3, CBEAM and CBAR elements were used to represent the individual components of the airframe such as spar and frames. Validation of FE static analysis was done using the static theoretical analysis in the form of stress calculations using simple beam theory. The airframe design was based on the +3.8 g flight load. Sizing of joints between modules was done through the use of empirical analysis. Internal forces induced in the connector between modules were used to size the joints. Approach using the CAD and Computational Aided Engineering (CAE) platform for designing the modular BWB airplane has been shown in this research. Design of the airframe proposed here had been analytically proven to be safe.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEGDEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	х
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvi

CHAPTER ONE: INTRODUCTION

 Problem Statement Objective Scope and Limitation of the Research Significance of Study Layout of Thesis Concluding Remarks 	.1	Background	1
 Objective Scope and Limitation of the Research Significance of Study Layout of Thesis Concluding Remarks 	.2	Problem Statement	1
 Scope and Limitation of the Research Significance of Study Layout of Thesis Concluding Remarks 	1.3	Objective	3
 Significance of Study Layout of Thesis Concluding Remarks 	1.4	Scope and Limitation of the Research	4
1.6 Layout of Thesis1.7 Concluding Remarks	1.5	Significance of Study	5
1.7 Concluding Remarks	1.6	Layout of Thesis	6
	1.7	Concluding Remarks	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Unmanned Aerial Vehicle (UAV)		8
2.2	Blended Wing Body (BWB)		
	2.2.1	Reviews on Airframe Design for BWB Manned Aircraft	15
	2.2.2	Reviews on Airframe Design for UAV BWB Aircraft	19
2.3	Modularity Concept		23
	2.3.1	Modularity in Design	23
	2.3.2	Applications related to Modularity	24
	2.3.3	Applications related to UAV	26
	2.3.4	Applications related to BWB	30

2.4	Aerodynamic Analysis of Loading Condition	30
2.5	Finite Element Method	34
2.6	Airframe Joints	39
2.7	Concluding Remarks	42

CHAPTER THREE: METHODOLOGY

3.1	Introdu	ction	43
3.2	Selection	on of Modular Section for BWB Airframe	44
3.3	Design	of BWB Airframe	46
	3.3.1	Morphological Method	46
	3.3.2	Pugh Method	48
3.4	Determ	ination of Loading	49
3.5	Compu	tational Aided Design	50
3.6	Finite I	Element Method	51
	3.6.1	Importing Geometry	51
	3.6.2	Rebuilding of Geometry	52
	3.6.3	Selection of Elements	52
	3.6.4	Meshing of Geometry	53
	3.6.5	Grouping of Entities	54
	3.6.6	Selection of Materials	55
	3.6.7	Application of Loadings and Specification of Boundary Condition	55
	3.6.8	Linear Static Analysis	56
	3.6.9	Analysis and Output Files	56
	3.6.10	Model Check	56
3.7	Sizing	of Joints	57

CHAPTER FOUR: DESIGN AND ANALYSIS OF MODULAR BWB AIRFRAME

4.1	Design of BWB Airframe		
	4.1.1	Structural Airframes for BWB	59
		4.1.1.1 Module 1: Wing Body	59
		4.1.1.2 Module 2 and Module 3: Starboard and Portside	61
		4.1.1.3 Module 4 and Module 5: Right and Left Side Canard	63
		4.1.1.4 BWB Modular Connector	65