UNIVERSITI TEKNOLOGI MARA

MUTAGENIC EFFECT AND ANTIMUTAGENIC POTENTIAL OF AQUEOUS AND METHANOL EXTRACTS FROM Hydrocotoyle bonariensis AND Centella asiatica

FLORINSIAH BINTI LORIN

Thesis submitted in the fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

January 2015

ABSTRACT

Mutations are the cause of innate metabolic defects in cellular system, triggering morbidity and mortality in living organisms. Since the mutagens are involved in the initiation and promotion of several human diseases, including cancer, the significance of novel bioactive phytocompounds in counteracting these pro-mutagenic and carcinogenics effects is now gaining attention. The aims of this study are to evaluate the phytochemical constituent, to determine the antioxidant capacity and to determine the mutagenic effect and antimutagenic potential in the absence and presence of metabolic activation (S9) in the plants extracts. In these study two samples namely H.bonariensis and C.asiatica aerial parts and roots in aqueous and methanol extracts were used to determine its bioactive compound via phytochemical screening and antioxidant capacity using the FRAP assay. Determination of the mutagenic effect and antimutagenic potential for both plants species were done using the Ames test after the bacterial strains fulfill the genotype characteristics needed. The finding revealed that both plants extract possessed alkaloid, phenol and tannins on its phythochemical content except for flavonoid which was only found in methanol extracts of H.bonariensis aerial parts. In the FRAP assay, both plants extracts showed antioxidant power. The results indicated that both methanol extracts of H.bonariensis aerial parts and methanol extracts of *C.asiatica* aerial parts and roots contain strong antioxidant power with high value of ascorbic acid equivalent. In the mutagenicity study, the methanol extracts of the aerial parts of H.bonariensis showed significant different (p<0.05) when compared to the negative control which shows positive response mutagenic effect at the concentration of 50 mg/ml with the mean number of revertant colony of 36.7 ± 6.4 for strain *S.typhimurium* TA 98 with the presence of metabolic activation (+S9). However, no mutagenic effect was observed by the roots of H.bonariensis in both extracts. On the other hand, the methanol extracts of the aerial parts of C.asiatica showed mutagenicity effect when tested in the presence of metabolic activation (+S9) by S.typhimurium TA 98 strain. The methanol extracts of the aerial parts of *C.asiatica* showed a significant difference (p<0.05) when compared to the negative control in all concentrations studied and also a dose-response relationship. The mean number of revertant colony at concentration of 50 mg/ml was 94.0 ± 2.6 , 66.3 ± 7.8 for the concentration of 12.5 mg/ml and 38.0 ± 2.6 for the concentration of 3.125 mg/ml. No mutagenic effects were seen when treated with C.asiatica roots in both aqueous and methanol extracts. In contrast, both aerial parts and roots of *H.bonariensis* and *C.asiatica* in aqueous and methanol extracts exhibited an antimutagenic effect against direct mutagen. The strong antimutagenic effect was found in methanol extracts of C.asiatica aerial parts and roots against the direct mutagen in S. typhimurium TA 98 with the percentage of inhibition valued 64.39% and 67.80% respectively. In conclusion, both extracts of H.bonariensis and C.asiatica aerial parts and roots have alkaloid, phenol and tannins and also antioxidant capacity which possibly contribute to the antimutagenic potential against direct mutagen by both plants species. The mutagenic effect was only showed by the methanol extracts of aerial parts of *H.bonariensis* and *C.asiatica* in the presence of metabolic activation (+S9).

TABLE OF CONTENTS

	Page
--	------

AUT	HOR'S	DECLARATION	ii
ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS			iii
			iv
			v
LIST OF TABLES			
LIST	OF FIC	GURES	xi
LIST	Г OF AB	BREVIATIONS	xiv
CHA	APTER O	DNE: INTRODUCTION	
1.1	Backg	round of Study	1
1.2	Signifi	icance of Study	4
1.3	Scope	s and Limitations of Study	5
1.3	Object	tives of Study	5
CHA	APTER 7	WO: LITERATURE REVIEW	
2.1	Medic	inal Plants	6
2.2	Plant l	Materials	8
	2.2.1	Hydrocotyle bonariensis	8
	2.2.2	Centella asiatica	11
2.3	Phyto	chemical Constituent in Medicinal Plants	17
2.4	Phyto	chemical Constituents as a Cancer Preventation	19
2.5	Antioxidant Activity		
	2.5.1	Antioxidant activity in medicinal plants	25
	2.5.2	Assessment of antioxidant activity in medicinal plants	27
		2.5.2.1 The principle of Ferric Reducing Antioxidant	28
		Power (FRAP) assay	
2.6	Mutag	genic Effects	30
	2.6.1	What is mutation?	30
	2.6.2	The principle of the Ames test	32
	2.6.3	Bacterial strains	33
	2.6.4	Metabolic activation (S9)	33

	2.6.5	Mutagenic effects in medicinal plants	34
2.7	Antim	utagenic Effect	38
	2.7.1	Introduction	38
	2.7.2	Mechanisms of the antimutagens	39
	2.7.3	Antimutagenic effects in medicinal plants	40

CHAPTER THREE: MATERIAL AND METHODS

3.1	Materials			
	3.1.1	Raw materials	44	
	3.1.2	Chemicals	44	
3.2	Appar	Apparatus		
3.3	Experi	erimental Design		
3.4	Sampl	Samples Preparation		
3.5	Samples Extractions			
	3.5.2	Aqueous extraction	47	
	3.5.3	Methanolic extraction	47	
3.6	Phytoe	Phytochemical Screening		
	3.6.1	Screening for alkaloid	48	
	3.6.2	Screening for flavonoid	48	
	3.6.3	Screening for saponins	48	
	3.6.4	Screening for phenols	48	
	3.6.5	Screening for tannins	49	
	3.6.6	Screening for anthraquinones	49	
3.7	Ferric	Reducing Antioxidant Power (FRAP) assay	49	
3.8	Genetic Analysis of Salmonella typhimurium Bacterial Strains			
	3.8.1	Pre-culture of the bacterial strains for genetic analysis	50	
	3.8.2	Purification of the bacterial strains for genetic analysis	50	
	3.8.3	Assessment of amino acid histidine (his) dependence	51	
	3.8.4	Assessment of biotin (bio) dependence	51	
	3.8.5	Assessment of the presence of <i>uvrB</i> mutation	52	
	3.8.6	Assessment of the presence of rfa mutation	52	
	3.8.7	Assessments of the presence of plasmid pKM101	52	
3.9	Grow	th Curve of the Bacterial Strains	53	
	3.9.1	Growth curve of S. typhimurium TA 98	53	