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ABSTRACT 

This thesis is concerned with the study of singular non-autonomous first order 
difference equation for a single equation and n-dimensional systems with a positive 
parameter. The study also involves singular non-autonomous first order differential 
equations for n-dimensional systems with delay and a positive parameter. Sufficient 
conditions for the existence and multiplicity of positive periodic solutions for singular 
first order functional differential and difference equations under various assumptions 
are presented. First, we employ Kranoselskii fixed point theorem and obtain sufficient 
conditions for the existence and multiplicity of positive periodic solutions to a scalar 
singular first order difference equation with a positive parameter. Next, we investigate 
the existence and multiplicity of positive periodic solutions for singular first order 
non-autonomous systems of difference equations with a positive parameter by 
applying the Kranoselskii fixed point theorem. Finally, we apply a fixed point index 
theorem to study the existence, multiplicity and nonexistence of positive periodic 
solutions with a positive parameter to nonlinear singular systems of first order 
functional differential equations. 
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CHAPTER ONE 

INTRODUCTION 

1.1 MOTIVATION 

A variety of population dynamics and physiological processes can be described as the 

following equation 

x'(t) = -a{t)x{t) + \b(t)f(x(t)). 

Periodic solutions of the type problems have attracted much attention (see (Jiang, Wei 

and Zhang, 2002), (O'Regan and Wang, 2005), (Wang, 2010)). One of the important 

question is whether these problems can support positive periodic solutions. 

The aim of this thesis is to study the existence and multiplicity of positive periodic 

solutions for singular non-autonomous first order difference equations for a single equa

tion and n-dimensional systems with a positive parameter. The study also involve the 

existence, multiplicity and nonexistence of singular non-autonomous first order differ

ential equations for n-dimensional systems with delay and a positive parameter. 

To motivate the following study some examples of first order differential with pe

riodic delays appear in some ecological models and periodic population dynamics are 

shown and how they describe the world around us are now presented. 

Example 1.1.1. 

The existence of positive periodic solutions of differential equations has been dis

covered in red blood cells production model, see (Wazewska-Czyzeska and Lasota, 

1976). The model 

N'(t) - -6N{t) + Pe~aN^ 
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describes the survival of red blood cells in animal. Here N(t) is the number of the red 

blood cells at time i, S is the rate of death of the red blood cells, P and a describe the 

generation of red blood cells per unite time, r is the time needed to produce red blood 

cells. 

Example 1.1.2. 

The existence of positive periodic solutions of functional differential equation also 

studied in Hematopoiesis model. (Jiang, Wei and Zhang, 2002) considered the scalar 

equation 

,At) = -7W«W+pW r | ^=^ |y , (1.1.1) 

where 7 ,p , r are continuous periodic positive function with a common period T, and 

the constant rn.n.T are positive. This is a hematopoiesis model which describes the 

production of red blood cells. In this model, the periodicity of some parameters are 

assumed, where the periodic variations of the environment play an important role in 

many biological and ecological systems. (Mackey and Glass, 1987) also used equation 

(1.1.1), with a continuous function as initial condition, to describe some physiological 

control systems. 

Example 1.1.3. 

The existence of positive periodic solutions of difference equation has arisen in har

vest population's growth equation. In (Zeng, 2006) considered the population's growth 

subjets to harvesting. The author assumed that under the catch per unit effort hypothesis, 

the harvest population's growth equation can be written as 

Ax(k) = x{k) • _ WMk) 
l + cx(k)j 

— qEx(k), 

where Ax(k) = x(k+l)-x(k), k 6 Z,a{k) mdb(k) G C(Z, (0, +00)) are a;-periodic, 

c is a positive constant, q and E are positive constant denoting the catch ability coeffi

cient and the harvesting effort, respectively. 

2 
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Example 1.1.4. 

The existence of positive periodic solutions of scalar functional difference equation 

has derived in the populations dynamcis model. In (Raffoul and Tisdell, 2005) showed 

that some population models admit the existence of a positive periodic solution. The 

scalar equation is 

N{n + l) =a(n)N{n) 
1 

No(n)Z°s=-00B(s)N(n + s) 
, neZ. (1.1.2) 

where N(n) of a single species whose members compete among themselves for the 

limited amount of food that is available to sustain the population, a is the intrinsic per 

capita growth rate and N0 is the total carrying capacity. 

1.2 THESIS OUTLINE 

The material of the thesis is organized as follows. Some preliminaries are introduced 

in Chapter 1 as a preparation for later discussion. It contains some theoretical results 

(without proofs) to make the presentation self-contained. 

In Chapter 2, we investigate the existence and multiplicity of positive periodic solu

tions for singular first order difference equation 

x(k + 1) - (1 - a(k))x(k) + \b(h)f(x(k)), keZ (1.2.1) 

by using Kranoselskii fixed point theorem. 

In Chapter 3, we extend the problem of scalar first order singular difference equation 

(1.2.1) to singular first order non-autonomous systems of difference equations 

Ax(fc) = -a(fc)x(fc) + Ab(fc)f(x(fc)). (1.2.2) 

We use similar method as in Chapter 2 to obtain the existence and multiplicity of positive 

periodic solutions to (1.2.2) by also using Kranoselskii fixed point theorem. 

In Chapter 4, we consider the singular systems of first order functional differential 
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equations 

u'(t) = a(*)g(u(t))u(*) - Xb(t)f(n(t - r(t))). (1.2.3) 

The existence, multiplicity and nonexistence of positive periodic solutions of (1.2.3) are 

established by using the fixed point index theory. 

In order to solve the problems (1.2.1), (1.2.2) and (1.2.3), first we obtain a varia

tion of parameter and display the desired solutions in terms of suitable green function 

and then try to find a lower and upper estimates for the kernel inside the summation. 

Once those estimaties are found, we use the fixed point theorem to show the existence, 

multiplicity and nonexistence of positive periodic solutions. 

1.3 PRELIMINARIES 

In this section, we state some preliminaries in the form of definitions and theorem that 

are of importance for the remainder of the thesis, (see (Kuttler, 2001), (Rudin, 1987)). 

Definition 1.3.1. A (real) complex normed space is a (real) complex vector space X 

together with a map : X -> R, called the norm and denoted || • ||, such that 

(i) ||x|| > 0, for all x 6 l and ||a'|| = 0 if and only if x = 0. 

(ii) ||ax|| = \a\ • ||ar||, for all x € X and all a e R. 

(iii) \\x + y\\ < ||a;|| + y | , for alls , y e X. 

Definition 1.3.2. A complete normed space is called a Banach space. A normed space 

X is a Banach space if every Cauchy sequence in X converges. 

Definition 1.3.3. (Kelly and Peterson, 2001). Let y(t) be a function of a real or complex 

variable k. The difference operator A is defined by 

Ay(t) = y(t + l)-y(t). 

where the domain of x is a set of consecutive integers such as the natural numbers Ar = 

{1,2,3, . . .} . The step size of one unit used in the definition is not really a restriction. 
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Consider a difference operation with a step size h > 0 say, z(s + h) — z(s). Let y(t) = 

z(th). Then 

z{s + h) - z(s) = z(th + h) - z(th) 

= y(t + l)-y(t) 

= Ay(*). 

Definition 13.4. An elementary operator that is often used in conjunction with the 

difference operator is the shift operator. The shift operator E is defined by 

Ey(t) = y(t + 1). 

If / denotes the identity operator-that is, Iy(t) — y(t) then we have 

A = E-I. 

The fundamental properties of A are given in the following theorem. 

Theorem 1.3.1. (Kelly and Peterson, 2001). 

(a) Aw(Awy(f)) = Am+ny(t) for all positive integers m and n. 

(b) A(y(t) + z(t)) = Ay(t) + Az(t). 

(c) A(Cy(t)) = CAy(t) if C is a constant. 

(d) A(y(t)z(t)) = y(t)Az(t) + Ez(t)Ay(t). 

y(t) z(t)Ay(t) 
(e) A ^ } = *mry 

Proof. We consider the product rule (d). 

A(y(t)z(t)) - y(t + l)z(t + 1) - y(t)z(t) 

= y(t + l)z(t + 1) - y(t)z(t + 1) + y(t)z(t + 1) - y(t)z(t) 

= Ay(t)Ez(t) + y(t)Az(t). 
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The other part are also straightforward. The formulas in Theorem 1.3.1 closely resem

ble the sum rule, the product rule, and the quotient rule from the differential calculus. 

However, note the appearance of the shift operator in parts (d) and (e). • 

Definition 1.3.5. (Kelly and Peterson, 2001). Indefinite sum (or antidifference) of y(t), 

denoted y ^ y(t), is any function so that 

*(][>(*)) = V(0 

for all t in the domain of y. The reader will recall that the indefinite integral plays a 

similar role in the differential calculus: 

The indefinite integral is not unique, for example, 

/ cos tdt = sin t + C, 

where C is any constant. The indefinite sum is also not unique. 

1.3.1 Fixed Point Theorems 

Let X be the Banach space and K be closed, nonempty subset of X. K is said to be a 

cone if (i) au + Qv G K for all u, v £ K and all a, /3 > 0 and (ii) u, -u e K imply 

u = 0. A fixed point of a transformation T : X -» X is a point x 6 X such that 

Tx = x. 

We now state a theorem given by Kranoselskii in 1964, the Kranoselskii fixed point 

theorem. 

Theorem 1.3.2. (Kranoselskii, 1964). Let X be a Banach space, and let K C X be a 

cone in X. Assume QUQ2 are °pen subsets of X with 0 € fi1? f̂  c ft2, and let 

T : t f n ( f t 2 \ f t i ) - » A' 
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be a completely continuous operator such that either 

(i) ||Tar|| < ||ar||, x G K n dttr and !|Tar|| > ||ar|| ,xeKn &Q2; or 

(ii) ||r:r|| > ||z||, x e K n dQi and \\Tx\\ < ||x|| ,xeKn £>ft2; 

Then T has a fixed point in T : K n (£l2 \ fti) -> A'. 

Next, we introduce the fixed point index theorem. First, we recall some concepts 

and conclusion on the fixed point index in a cone. Assume Q, is bounded open subset in 

X with the boundary Oil, and let T : K n Cl -> A' is completely continuous operator 

such that Tx ^ x for x € <9Qn AT, then the fixed point index i(T, KnQ,K) is defined. 

If i(T, KC\Q,K)^0 then T has a fixed point in K n fi. 

Theorem 1.3.3. (Deimling, 1985), (Guo and Lakshmikantham, 1988), (Kranoselskii, 

1964). Let .Y be a Banach space and K is a cone in X. For r > 0, define Kr = {u €-

K,\\x\\ < r}. Assume that T : Kr -> K is completely continuous such that Tx ^ x for 

x e dKr = {« G AV : \\x\\ = r}. 

(i) if | |rx|| > ||x-|| for x 6 0ATr, then i(r, ATr, A') = 0. 

(ii) if \\Tx\\ < \\x\\ for x € <9AV, then i(T, Kr, K) = 1. 

7 
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CHAPTER TWO 

POSITIVE PERIODIC SOLUTIONS OF SINGULAR 

FIRST ORDER DIFFERENCE EQUATION 

2.1 INTRODUCTION 

Let E denote the real numbers, Z the integers and R+ - [0, oo), the nonnegative real 
n 

numbers. Given a < b in Z, let [a, b] = {a, a + 1, . . . , b} . Let R* = J J R+. 
i = i 

In this chapter, we investigate the existence and multiplicity of positive periodic 

solutions for singular first order difference equation 

x(k + 1) = (1 - a(k))x{k) + \b(k)f(x(k)), keZ (2.1.1) 

where Z is the set of integer numbers, u G N is a fixed integer, A > 0 and b : Z -> 

[0,oo), a(fc) are u-periodic and a(fc) is continuous with 0 < a(k) < 1 for all k e 

[O ru;-l]and/€C(E^\{0},(0,(X))). 

The study of the existence of positive periodic solutions in difference equations was 

motivated by the observance of periodic phenomena in mathematical ecological differ

ence models, discrete single-species models and discrete populations models, see for 

examples, (Gopalsamy and Weng, 1994), (Gurney, Blythe and Nisbet, 1980), (Jiang 

and Wei, 2002), (Jiang, Wei and Zhang, 2002), (Kelly and Peterson, 2001) and (Weng, 

1996). Although most models are described with differential equations, (see (Argawal 

and O'Regan, 2003)) but the discrete models are more appropriate than the continu

ous ones when the size of the population is rarely small or the population has non-

overlapping generations. 
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Recently, Kranoselskii fixed point theorem has become an effective tool in proving 

the existence of periodic solutions. It seems that the Kranoselskii fixed point theorem 

on compression and expansion of cones is quite effective in dealing with the problem. 

In fact, by choosing appropriate cones, the singularity of the problem is essentially re

moved and the associated operator becomes well-defined for certain ranges of functions 

even there are negative terms. 

In (Wang, 2011), the author employed the Kranoselskii fixed point theorem to estab

lish the existence and multiplicity of positive periodic solutions for first non-autonomous 

singular systems 

x'{{t) = -Oi{t)xi{t) + XbiWfiMt),...,xn(t)), 

where i = 1 . . . . , n. On the other hand, (Zeng, 2006) proved the existence of positive 

periodic solutions for a class of non-autonomous difference equation 

Ax(k) = -a(k)x(k) + f(k,u(k)) 

where the operator A is defined as Ax(k) = x(k+l) —x(k). In (Argawal and O'Regan, 

2003) and (Chu and Nieto, 2008), the authors showed the existence of periodic solutions 

for singular first order differential equations. 

Inspired by the above work, we consider to carry the work of (Wang, 2011), to the 

discrete case for scalar difference equations. We shall establish a new result on the 

existence and multiplicity of positive periodic solutions of equation (2.1.1) by utilizing 

the well-known theory of Kranoselskii fixed point theorem. 

2.2 PRELIMINARY RESULT 

In this seQtion we state some preliminaries in the form of lemmas that are essential to 

proofs our main result. 

Let X be the set of all real u;-periodic sequences x : Z+ -> R", endowed with the 

9 
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maximum norm 

ILxll = max \x(k)\. 
k£[o,uj-i} v n 

Thus X is a Banach space. Throughout this chapter, we denote the product of x{k) from 
b 

k = a to k = 6 with the understanding that J J x(fc) := 1 for all a > 6. We make the 
fc=a 

following assumptions: 

(HI) 0 < a(k) < 1 for all k G [0,u; - 1]. 

(H2) / : Rrl\ {0} -> (0, oo) is continuous. 

Lemma 2.2.1. Assume (HI), (H2) hold. If x e X then x is a solution of (2.1.1) if and 

only if 

x{k)= J2 G(k,s)\b(s)f(x(s)), 

where 

G(k,s) = ^ J ^ ' ^ L se[k,k + U- 1]. (2.2.1) 

Note that the denominator in G(Ar, s) is not zero since 0 < a(k) < 1 for k e 

[ 0 , w - l ] . 

A; 

/Voo/ Multiplying both sides of (2.1.1) by J J ( 1 - a ( r ) ) " 1 , 

r=0 

(fc+l)-l fc-1 * 

x(k + 1) J ] (1 - a(r))-1 - x(k) J[(l - air))-1 = A J J ( 1 - a ( r ) ) " 1 ^ ) / ( * ( * ) ) • 

By the discrete product rule (see Kelly and Peterson, 2001), Theorem 1.3.1 (d), we have 

A (x(k) f [ ( l - air))-1) = A f j ( l - a(r))- ]6(^/(x(A0). 
r=0 / r=0 

Summing the above equation from s = k to s = k + UJ — 1, we obtain 

Jfc+u;-] / * - l \ *+w- l A: 

fc=fc \ r=0 / k-k r=0 

10 
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By the Definition 1.3.5, thus we have 

k+LJ-l k-1 k+LJ-1 k 

x(k+u) n (l-a(r))-1-x(fc)n(l-«W)-1=A J2 I R 1 - ^ ) ) " 1 6 ^ ) / ^ * ) ) -
r = 0 r = 0 k=k r=0 

Since x(k + u) = x(h), we obtain 

x(Jfe) 

' f c+U>- l k-1 

I] (l-aCr))-1-!!^-^))-1 

r = 0 r = 0 

fc+u>-l fc A E n*1-^))'16^)/^*))-
k=k r=0 

k+u-l 

Multiplying both sides of the above equation by f j (1 - a(r)), we complete the 

proof. 
r=0 

It is clear that G(k, s) = G(k + u, S + LU) for all jfc, s G Z. A direct calculation shows 

that 

7/7-
.= n^q-aCr)) < G ( M < _ 

n^(l-a(r)) 
:= M. (2.2.2) 

^ - 1 

Define a = J J ( 1 - a(r)) < 1 satisfying 
r = 0 

° <G(k.s)<- , k<s<k + uj. 
\-<y \-a 

m Thus, from 2.2.2, we have a = — > 0, 

Therefore 

w - l 

| x | | = max | .X-(A-) |<A/VA6(A-) / ( .T(A:) ) . 

LJ-l 

x(k)>m\^2b(k)f(x{k)) 
k=0 

>^^i(fc)/(#)) 
fc=0 

> a llxll. 

11 
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Now we define a cone 

K={x€ X\k E [0, W - l],x{k) > y \\x\\ = a \\x\\} . 

It is clear that K is a cone in X and min \x(k) \ > a \\x\\ for x e K.Forr > 0, define 
fc£[0,a;— 1] 

fir = { x 6 i f : ||z|| < r } . Note that dQr = {# € AT: ||x|| = r } . Define a mapping 

T:X ^Xby 
Tx(k) = \ Y, G(k,s)b(s)f(x(s)), (2.2.3) 

where <3(fc, s) is given by (2.2.1). By the nonnegativity of A, / , a, b, and G, Tx(k) > 0 

on [0, u - 1]. It is clear that Tx(k + u)= Tx(k). 

Lemma 2.2.2. T : K\ {0} ->• K is well-defined. 

Proof. For any x G K\ {0}, for all A; 6 [0, u - 1] we have 

IITxH = max \Tx(k)\ < M^A6(a)/(ar(a)). 

Therefore 

Tar(Jfc) = A £ (?(*, 5)6(a)/(x(5)) 
. 9 = A ; 

w - 1 

>AmX)6(«)/(x(«)) 
s=0 

^ I ^ I -

Hence Tx{k) > a \Tx\. This implies that T : K\ {0} -> K • 

Lemma 2.23. If (HI) and (H2) hold, then the operator T : K\{0} -> K is completely 

continuous. 

Proof. Let xm(k), x0{k) e K\ {0} with xm(k) -> x0(k) as m -> oo. From (2.2.3) and 

since f(k, x(k)) is continuous in x(k), as m -» oo, we have 

w - l 

|r*m(*) - TxQ(k)\ < M £ A |6(s)| |/(*m(s)) - f(x0(s))\ -> 0. 
5=0 

12 
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Hence ||Txm(A;) - Tx0(k)\\ -> 0, it follows that the operator T is continuous. Further 

if K\{0} G X is a bounded set, then ||z|| < d = const for all x G K\{0}. Set 

C2 = maxf{x{k)),x € ^\{0} then from (2.2.3) we get, for all a; € K\{0}, 

fc+w-1 

||Tx|| < M ^ A \b(s)\ \f(x(k))\ < MuC2. 
s=k 

This shows that T(K\{0}) is a bounded set in K. Since if is n-dimensional, T(K\{0}) 

is relatively compact in K. Therefore T is a completely continuous operator. • 

For the next following lemmas, we now introduce some notations. For r > 0, let 
CJ — l CJ — 1 

s=0 a=0 

C(r) = max (f(x) : i € l n
+ , ||z|| < r} > 0. 

Lemma 2.2.4. Assume that (HI), (H2) hold. If 77 > 0,x G K\ {0} , and f(x(k)) > 

\\x(k)\\ vforke [0, w - 1], then \\Tx\\ > XTr] \\x\\. 

- Proof. Since x e K\ {0} and f(x(k)) > \\x(k)\\ r? for k G [0, w - 1], we have 

k+u>-l 

Tx(k) = X £ G(k,s)b(s)f(x(s)) 
s=k 

>XmY/b(s)f(x(s)) 
5=0 

>XmJ2Hs)\\x(k)\\V 

> Am 22 Hs)°~ \\x\\ V-

Thus ||rx|| > XTr) \\X\\ . This completes the proof. • 

Let / : [1,00) -> K+ be the function given by 

}{$) = max {/(a?): x G R£,and 1 < ||a;|| < 0} . 

It is easy to see that f(6) is nondecreasing function on [1,00). The following lemma is 

essentially the same as Lemma 3.6 in (Wang, 2011) and Lemma 2.8 in (Wang, 2003). 

13 
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fix) 
Lemma 2.2.5. (Wang, 2011), (Wang, 2003) Assume (H2) holds. If lim ^ - i exists 

X-¥CXD X 

(which can be infinty) then lim -^- exists and lim -7— = lim ——. 

Lemma 2.2.6. Assume that (HI), (H2) hold. Let r > —. If there exists an £ > 0 such 

that / > ) < er, then ||Tx|| < Axe ||z|| for x 6 dfir. 

Proo/ From the definition of T for x € <9fir, we have 

||Ta:||<AAf26(a)/(a;(a)) 
5=0 

< A M j > ( * ) / ( r ) 
3=0 
U-l 

<XMj2b(s)er 

3=0 
u;- l 

= \M^2b(s)e\\x\\. 
3=0 

This implies that ||Tar|| < Axe ||x||. • 

In views of definition C(r), it follows that 

0<f(x(k))<C{r) forfce[0,u;-l] , 

if x € dQr, r > 0. Thus it is easy to see the following lemma can be shown in similar 

manner as in Lemma 2.2.6. 

Lemma 2.2.7. Assume (HI), (H2) hold. If * € dilr,r > 0 then \\Tx\\ < A*C(r), 

where x is defined in Lemma 2.2.6. 

Proof. From the definitions of T for x € dQr we have 

u;- l 

\\Tx\\<>Mj2K8)f(x(8)) 
3=0 

<AM^&(s)C(r ) 
3=0 

< A*C(r). 
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Thus it implies that ||Tx|| < A*C(r). • 

2.3 MAIN RESULT 

In this section, we establish conditions for the existence and multiplicity of positive 

periodic solutions of (2.1.1). 

Theorem 2.3.1. Let (HI), (H2) hold, we assume that lim f(x) = oo. 

fix) 
(a) If lim ^ - ^ = 0, then for all A > 0 (2.1.1) has a positive periodic solution. 

£-+oo X 

fix) 
(b) If lim ;L-L-L = oo, then for ail small A > 0 (2.1.1) has two positive periodic 

x-*oo X 

solutions. 

(c) There exists a A0 > 0 such that (2.1.1) has a positive periodic solution for 0 < 

A < A0. 

Proof, (a). From the assumptions, lim f(x) = oo there is an rx > 0 such that 

f(x) >Tl\\x\\ 

for x € K\{0} and 0 < x < ru where 77 > 0 is chosen so that 

XTT] > 1, 

where T is defined in Lemma 2.2.4. Let Qri = {x 6 K : ||x|| < r3}. If x e <9f2n, then 

f(x(k))>\\x(k)\\f,. 

Lemma 2.2.4 implies that 

||Ts|| > \Tr) \\x\\ > \\x\\ for x € 9firi. (2.3.1) 

fix) 
We now determine fir2. Let Qri = {x e K : ||x|| < r2}. Note that lim ^ ^ = 0, it 

15 
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K} f(6) 
follows from Lemma 2.2.5, lim ——- = 0. Therefore there is an ro > max 

0-KX) 0 

such that 

/(r2) < er2, 

where the constant e > 0 satisfies 

Aex < 1, 

where x is defined in Lemma 2.2.6. Thus, we have by Lemma 2.2.6 that 

\\Tx\\ < XeX \\x\\ < \\x\\ for x € dVtT2. (2.3.2) 

By Lemma 1.3.2 applied to (2.3.1) and (2.3.2), it follows that T has a fixed point in 

Clr2 \Qn» which is the desired positive periodic solution of (2.1.1). • 

Proof, (b). Fix two numbers 0 < r3 < r4, there exists a A0 such that 

xc(r3y
 v

 xc(r4y 

where xC{r) defined in Lemma 2.2.7. Thus, in Lemma 2.2.7 implies that, for 0 < A < 

||Tar|| < XxC(rj) 

Thus 

\\Tx\\ < \\x\\ for x e dQrj, (j = 3,4). (2.3.3) 

f(x\ 
On the other hand, in view of the assumptions lim = oo and lim f(x) = oo, 

X~~TOO J^ X—¥[) 

there are positive numbers 0 < r2 < r3 <r4< H such that 

/(*) > V IMI 

16 
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for x e K\{0} and 0 < x < r 2 o r a ; > ^ where 77 > 0 is chosen so that 

XTr] > 1. 

Thus i fa ;e^r 2 , then 

/(*) > V \\x\\. 

H) 
Let n = max { 2r4, — } if x e dQri, then 

min x(k) > o Ibll = arx > H, 
fce[0,u>-l] ' 

which implies that 

fix) > V M\ • 

Thus Lemma 2.2.4 implies that 

||Tx|| > Arr/ ||a;|| > ||x|| for x 6 <9fin, (2.3.4) 

and 

\\Tx\\ > Arr? ||ar|| > ||z|| for x € dQ^. (2.3.5) 

It follows from Lemma 1.3.2 applied to (2.3.3), (2.3.4) and (2.3.5), T has two fixed 

points xi and x2 such that x\ € Clr3\Qr2 and x2 € Cln\QrA, which are the desired 

distinct positive periodic solutions of (2.1.1) for A < A0 satisfying 

r 2<IWI <n<r4< \\x2\\ <ri . 

Proof, (c). Choose a number r3 > 0. By Lemma 2.2.7 we infer that there exists a 

A0 = — £ \ > 0 such that 

\\Tx\\ < \\x\\ for x€dtlr3 0 < A < A0. (2.3.6) 
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On the other hand, in view of assumption lim f(x) = oo, there exists a positive number 
x-*0 

0 < T2 < r3 such that 

/(*)>»7lMI 

for x e K\{0} and 0 < x < r2 where r) > 0 is chosen so that 

XTr] > 1, 

where F is defined in Lemma 2.2.4. Thus if x € dtlT2, then 

/(*) > V INI • 

Lemma 2.2.4 implies that 

\\Tx\\ > XTrj \\X\\ > \\x\\, for x 6 dnr2. (2.3.7) 

It follows from Lemma 1.3.2 applied to (2.3.6) and (2.3.7), that T has a fixed point 

x e Qr \f2r2. The fixed point x £ n r3\O r2 is the desired positive periodic solution of 

(2.1.1). • 

Remark 2.3.1. 

If the right function in equation (2.1.1) is of the form f(x(k - r(k))), we can apply 

the same method to obtain similar result as Theorem 2.3.1. The result extended the work 

of (Raffoul, 2005) where he considered the existence of positive periodic solutions of 

scalar nonlinear functional difference equation 

x(n + 1) = a(n)x(n) + h(n)f(x(n - r(n))), 

where a(n\, h(n) and r(n) are T-periodic for T is an integer with T > 1 under the 

assumptions that a(n), f(x) and h(n) are nonnegative with 0 < a(n) < 1 for all n e 

[0,T-l\. 
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