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ABSTRACT 

A theoretical analysis of the springback of thin tubular sections ofnon linear 
work-hardening materials under torsional loading has been carried out. The 
non-linear behavior of the material is approximated by using Modified Ludwik 
type stress-strain relation. The theoretical analysis is supported by experimental 
results for different tubular section viz. square, triangular and rectangular 
sections of different thicknesses. Finally analytical generalized expressions 
relating angle of twist to twisting moment and residual/springback angle of 
twist per unit length for thin tubular bars under plastic torsion are obtained in 
non-dimensionalized form. A comparison between the results obtained for 
thin tubes on non-linear and linear work-hardening material loaded under 
torsion is also made. 

Keywords: Metal forming, Springback, Torsional springback, Thin tubes, Non­
linear work hardening materials 
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Nomenclature 

u, v, and w Small displacements in x, y, and z direction, respectively 
9 Angle of twist per unit length of the tube 
0e Elastic angle of twist per unit length 
0R Residual angle of twist per unit length 
05 Springback angle of twist per unit length 
6 Non-dimensionalized angle of twist per unit length 
6R Non-dimensionalized residual angle of twist 
0S Non-dimensionalized springback angle of twist 
y Shear strain 
Txz> Tyz Shear stress 
G Modulus of rigidity 
0 e Elastic stress function 
V Gradient 
T Twisting moment (torque) 
Te Elastic torque 
T Non-dimensionalized torque 
? Deflection of membrane 
a Yield strength in tension 
P Numerical factor; 1/2 for Tresca and 1/V3 for Mises yield criterion. 
0p Plastic stress function 
A Mean of the areas enclosed by the outer and inner boundaries of 

the cross-section of the tube 
S Length of the center line of ring section of the tube 
t Thickness of the tube 
T0 Yield shear stress 
a Plastic modulus of rigidity 
ex>

 ey Longitudinal strain 
\i Poisson's ratio 
Ia Refers to the annular area over which / / 4>e is taken 
l± Area enclosed by inner boundary 
0 e i Constant value of stress functions along the internal boundary 
n Non-linear work hardening index 

Introduction 

Thin walled tubular components produced by different sheet metal forming 
processes have been widely used in automotive industries for different 
applications. Tubes with circular, square, or rectangular cross-sections are part 
of the assemblies. One of the major technical issues associated with these tubes 
is elastic recovery of material (springback) after completion of forming process. 
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Springback is one of the principal physical characteristics in the metal forming 
processes. It can be defined as natural tendency of material to regain its original 
shape after the removal of externally applied forming loads. At the end of metal 
forming operations, the elastic deformation disappears on the removal of the 
applied load due to reduction in stress and the elastic strain energy is released. 
While designing the die-set, springback factor should be taken into consideration 
so that the shape after springback is such that it avoids mismatch while assembling 
different formed sections. Based on the part geometry and deformation area, 
different types of springback in sheet metal exist: bending, membrane, twisting 
and combined bending and membrane [1]. The twisting or torsional type of 
springback is the measure of elastic recovery of angle of twist on the removal of 
applied torque after twisting the section beyond elastic limit. Uneven elastic 
recovery in different directions is the main cause for this type. 

An accurate analysis of springback has been made in the past on sheet 
bending operations through experiments [2] - [16] and simulation [17] - [24]. In all 
these works, issues related to accurate prediction and effective compensation of 
springback for different type geometries are discussed. In recent years, much 
attention has been placed on springback of tubes [25] - [29]. Most of the 
researchers use simplified models and different stress-strain relationship in finding 
out the amount of springback in tube bending operations. Torsional springback 
of bars of different cross-sections has been analyzed by Dwivedi et al. [30] - [35]. 
Springback of narrow rectangular strips of linear work-hardening materials under 
torsional loading [30] - [31] and general cross-sections with the torsional 
springback for work-hardening materials were estimated [32] - [34] by using 
Ramberg-Osgood stress-strain relation and deformation theory of plasticity. A 
numerical scheme based on finite difference approximation was used. The elastic-
plastic boundary in the bars of square section and L-section were also determined 
in addition to springback. Theoretical results were verified by experiments on 
mild steel bars. In a study [35], springback analysis of narrow rectangular bar in 
torsion for non-linear work-hardening materials was considered. Non-linear 
behavior of the material was approximated by assuming Modified Ludwick type 
stress-strain relationship. The result of bi-linear case [30] was compared with by 
considering non-linear behavior of the material of tubular bars. It was found that 
experimental values had excellent match for materials having non-linear behavior. 

It is always desirable to develop analytical expressions which can readily be 
used by the designers. From the literature it appears that no attempt has been 
made to analyze the springback in torsion of thin tubular sections. Therefore, 
the present paper is concerned with a theoretical analysis of springback in thin 
tubular section of non-linear work-hardening materials under torsional loading. 
Work hardening behavior of the material is approximated by assuming Modified 
Ludwik [36] type of stress-strain relation. In this analysis, analytical expression 
connecting the angle of twist and residual angle of twist to the given twisting 
moment applied to the tubular bars have been derived in non-dimensional form. 

17 



Journal of Mechanical Engineering 

From the derived relationship, the angle of twist provided to a tubular bar of any 
material and cross-section can be calculated to obtain the twisting moment and 
residual angle of twist if its non-linearity index is known. 

Theoritical Framework 

A prismatic bar undergoing torsion and elastic deformation is considered. Let u, 
v and w be the small displacements of the point (x, y, z) relative to its initial 
position, in the x, y and z directions respectively. At a section, where z is 
constant, the cross-section rotates about the z-axis and so [37], [38]. 

u = — yz0, v = xz0, and w = 0/(x,y) (1) 

where 0 is the angle of twist per unit length of the bar. 

For elastic states of stress considered, 

£sz - £5s = 2G0 - constant (2) 
ay ax v J 

If a stress function 0 e is taken such that 

a0p , dQp. 

x x z = ^ a n d T y z = - ^ f (3) 

the equilibrium equation 

17+^=° (4) 

is automatically satisfied. Hence from equations (2) and (3) 

( 5 + | O 0 e = V20e = -2Ge (5) 

Along a boundary curve xyz /TX Z = dy/dx, the boundary is free from any stress, so 

- t y z d x + xxzdy - ^ f dx + ^ dy - d0 e - 0 (6) 

and along a boundary, the twisting moment T is given by 

T = //(xyzx - xxzy) dx dy = 2 fj 0 e dx dy (7) 

According to PrandtPs membrane or soap film analogy [39] & [40], a thin 
membrane clamped around a bounding curve is considered identical to that of 

18 
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the cross-section of the twisted bar loaded by a constant lateral pressure. It 
can be shown that the deflection £, of such a membrane satisfies a differential 
equation of the form 

V2^ = a constant (8) 

Along the contour line of the surface, £, is constant, that is equivalent 
to 0e = constant. But along a contour line Tyz/rxz = dy/ds which means that 
the resulting shear stress direction is along the tangent to the contour line 
and the magnitude of the shear stress is proportional to the greatest slope of 
the surface at that point. 

For a prismatic bar with hollow section [3 8], twisting moment 

T = 2 [ 0 e l I 1 + led (9) 

Where, 1̂  refers to the annular area over which fj 0 e dx dy is taken 
and Ix is the area enclosed by the internal boundary of the section, 0 e l being 
constant value of stress function along the internal boundary. 

The membrane analogy may be applied to hollow sections with slight 
modification. The first term of the right hand side of equation (9) clearly 
represents a cylindrical prism formed beneath the 'hollow' and second term is 
the volume directly under the film. If a light rigid plate having the shape of the 
inner boundary is constrained to move vertically by any amount, the soap film 
between the plate and the outer boundary is stretched and the plate finds its 
own height due to air-pressure beneath. However, in case of a thin tube the 
variation of the slope of the membrane is negligible along the thickness and 
the slope may be taken as constant, 

In case of plastic deformation [39], 

*xz + *yz = (J)' (10) 

Where a may be taken as current yield strength in tension and p is a factor 

equal to 1/2 for the Tresca and 1/V3 for the Mises yield criterion. Equation 
(10) with the help of equation (3) may be written as 

V0p+ V0p = g ) = [x(y)]2 J 

or 

|V0P| = x(y) 

19 
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Where 0P is the plastic stress function, t(y) is the current yield shear 
strength expressed as a function of shear strain y. For a perfectly-plastic material, 

|V0p | = T = constant (12) 

From equation (12) it is clear that if the material is elastic-perfectly plastic 
then 0 p forms a surface of constant slope. So to determine the limiting torque in 
such a case, Nadai's Sand heap analogy [39] & [40] may be adopted. 

However, when the material is strain hardened, such a procedure is not 
feasible. But, in such cases the roof representing the plastic state of stress will 
be an ever-changing one with the slope at a point increasing with increasing 9 
for a particular value of 0. The roof and the membrane representing the plastic 
region will be touching each other, i.e., they will have the same slope at a point 
undergoing plastic deformation. 

ii y* 

o - ' * , 

'i-
Figure 1: Geometry of the Problem 

Consider a hollow tube of arbitrary section having constant thickness t 
under torsion (Figure 1). The tube dimensions are such that there is no chance of 
buckling. Let it be assumed that the shear stress-strain curve for the material of 
the bar is non-linear as shown in Figure 2 in which 

x = 

Gy T < x 0 o r y < (x0/G) = y0 

T > x 0 o r y > y 0 
(13) 
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Where x0 and Y0 are the yield stress and strain respectively, and 'n' is 
Non-linearity index which is generally less than 0.5. Elastic analysis of the 
tube under torsion using soap film analogy [37] & [38] gives, 

"T"=i 
0 = 

TS 

4A2Gt 

also, 

W = y G 9 

(14) 

(15) 

(16) 

Where A is the area enclosed by the outer and inner boundaries of the 
cross-section of the tube and S is the length of the center line of the ring 
concentration section of the tube. The effect of re-entrant corner, if any, 
produces stress concentration but its influence in torque deformation 
characteristic is negligible. 

2,0 

t 

1.5 

1.0 

0 .5 

0 2 \ 

" ^ 0 . 3 ^ . 

* 0 . 2 

0.1 

0 

i 

Figure 2: Modified Ludwik stress strain curve [36] 
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From equation (13) the shape of shear stress-strain curves dx/dy (modulus 
in plastic range) can be obtained. It is known that, 

so, 

- = T 0 n ( - ) y11 

7 V T 0 / 

(17) 

For a tube undergoing plastic deformation, as the shear stress is constant 
over the cross-section, from equation (16) 

so, 

x = — G6 
s 

, 2A/dx\ 1A 

(18) 

Substituting the values ot dx/dy from equation (i 7) into equation (18).. 

we obtain 

dx = 

Vx0/ VX0/ VT0/ 

-"©(if 

dx 

i 2A 
dx - — I x, 

, 2A 
dx = — 

s 

dG 

.nzli 
dO 

2AGn 
de 

~ir-rdx 
2AGn 

d8 

Integrating above equation, we obtain, 

Niz£ A 2AGn , n . ^ 
n ( i 0 ) n xn = d« ~h C 

When 0 = G0 , x = x0 , gives C = 0, so 

-(r'(w»-
(19) 

22 



Torsional Springback Analysis 

from equation (14) and equation (19) 

T - (^ )V 
or 

V2At ° / 2AG (20) 

When the tube is unloaded from plastic state, the unloading is elastic in 

nature. Thus, the residual angle of twist per unit length (Gp) is be given by 

OR = e - e e 

(21) 

^2At V2/' :: 2 AG 4AzGt 

Writing in non-dimensional form, 

0 
O.i 

. „ . . . - . _ . . a n c | ^ - _ _ 

T0 S/4A2Gt T 0 

r??v; 

or 

From equations (13), (20) & (22), we get 

f T _(n-Q] S 
5 — UAtlO J2AG 
0 " ~ __IQZ—"" 

4A2Gt 

= > § = ( T ) ( 1 / n ) 

(T) = ( 0 ) n 

(23) 

Again from equation (21) non-dimensionalized residual angle of 
twist OR can be obtained as, 

9 * = ^ eR __ e-8 

Spring back percentage in twist (0S), can be obtained as 

% 9 s = [ l - ^ ] x l 0 0 = 
L 9 j 

8-8 
x 100 

(24) 

% es = (e)n 1 x ioo (25) 
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Experiments 

The mild steel tubular bars of square and triangular cross-sections (25mm x 
25mm) and rectangular cross-section (30mm x 20mm), of different lengths 
(178-280 mm) and of different wall thickness (2 and 3 mm) are subjected to 
torsion test on "Avery Torsion Testing Machine" that has accuracy up to 0.1 
degree. The angle of twist, torque and residual angle of twist was noted. 
Experimental points were plotted along with the theoretical curves drawn for 
different values of work-hardening index. Details are given in Appendix. 

Results and Discussion 

The amount of springback in terms of angle of twist, depends on 

• the point on T - 0 curve from where unloading is initiated 
• the slope of the elastic unloading line. 

Since, the material is strain hardened, the amount of springback will be a 
function of the angle of twist, the elastic modulus of rigidity and the work 
hardening index. This has been obtained theoretically in equations (24 & 25) 
and verified experimentally. 

Figures 3, 4 and 5 shows the variation of springback /residual angle of 
twist in percentage with the variation in angle of twist, respectively, for 
square, triangular and rectangular tubular section for n = 1/3. It is found 
from the figures that the amount of springback decreases as the angle of 
twist increases. This is quite expected because initially for smaller values of 
twist, bulk of deformation is elastic and, as such, recoverable percentage of 
deformation is high. However, as the angle of twist increases the share of 
non-recoverable plastic deformation increases and the recoverable elastic 
deformation (springback) as percentage of total deformation decreases. This 
is true for all tubular sections. It is also clear from the figures that springback 
decreases as thickness increases. 

It is also clear from the figures that experimental values which are marked 
in the figures for mild steel bar n = 1/3 are well in agreement with the 
theoretical predictions, confirming the validity of the theoretical analysis. 

Figure 6 shows the variation of torque (T) with angle of twist (§) for different 
values of strain hardening index (n). It is evident from the figure that for 
particular angle of twist the required torque is more for higher strain-hardening 
index (n) and it decreases as n decreases. 
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Figure 3: Springback/Residual Angle in % vs. Angle of Twist for Square 
(25 mm x 25 mm) Boundary 
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Figure 4: Springback/Residual Angle in % vs. Angle of Twist for Triangular 
(25 mm x 25 mm) Boundary 
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Figure 5: Springback/Residual Angle in % vs. Angle of Twist for Rectangular 
(30 mm x 20 mm) Boundary 
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Figure 6: Non-Dimensionalized Torque (T) in % vs. Non-Dimensionalized 

Angle of Twist (Q) with (n) as Parameter 
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The nature of variation of springback percentage ((Q with angle of 
twist (0) for different values of strain-hardening index is shown in Figure 7. It 
is observed from the figure that as n decreases springback percentage 
decreases. 

So, from the analysis, it is possible to ascertain theoretically the value of 
angle of twist of tubular section bars or the torque applied to the general 
cross-section bars after knowing the value of strain-hardening index (n). The 

relationship between (§) & (T) and (0) & 0 R / § S for different values of n 

have been presented, respectively, in Figures (6 & 7). 
The required values can be determined either from equations (23) and 

(25) or from these figures. Usually, in practical situation for given value 

of(0), the value of(0R) is to be determined if the loading is kinematic 
and (T) is to be determined if loading is kinetic. 

Figure 7: Non-Dimensionalized Springback (0S) in % vs. Non-

Dimensionalized Angle of Twist (@) with (n) as Parameter 

Figure 8 shows the comparison of torque vs. angle of twist curves for 
the non-linear work-hardening index n = 1/3 and the bi-linear work-
hardening approximation a/G = 0.074. It is clear from the figure that the 
experimental values have excellent match when non-linear material behavior 
is taken though the experimental points fall between these two approximations. 
Bi-linear behavior approximated (with a/G = 0.074) is not found to be 
satisfactory. 

27 



Journal of Mechanical Engineering 

1.6 r 

1.2 h 

0.8 h 

0.4 h 

n=1/3 

a/G=0,075 

• : ExpeiimenMt Points 4 

3 4 
Obar 

Figure 8: (T) vs. (0) for Bilinear Work Hardening a/G = 0.074 and Non-

Linear Work Hardening n = 1/3 Case 

Conclusions 

Based on the results presented above the following conclusions have been drawn: 

1. Torque, Residual/Springback angle of twist per unit length are same for all 
tubular sections for same values of A, S and n. 

2. The resulting formulae are in good agreement with experimental data of 
different section bars for mild steel. 

3. An analysis relating the angle of twist to the twisting moment and the angle 
of twist to the Residual/Springback angle of twist for tubular bars under 
plastic torsion has been presented in non-dimensionalized form, so that 
same curves could be used for different material. 

4. The experimental points lie closer to the curve drawn for non linear 
relationship as compare to that for the linear relationship. So it can be 
inferred that the non-linear theory gives more accurate results than those 
obtained by assuming linear relationship. 
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Appendix 

(A) Experimental Procedure 

The present work is concerned with experimentally quantifying the torque, 
springback and residual angle of twist per unit length of mild steel tubular bars 
of square and triangular cross-sections (25 mm x 25 mm) and rectangular cross-
section (30 mm x 20 mm), of different lengths (178-280 mm) and of different wall 
thickness (2 and 3 mm). Figure A shows the pictorial view of "Avery Torsion 
Testing Machine". The strain was applied to the specimen by worm and spur 
gearing was so arranged that the frill load might be applied by hand without 
undue effort. The load was transmitted from the weighing spindle by means of a 
horizontal torque arm, mounted on antifriction bearings, which transmitted a 
vertical pull to the indicating unit. The load indicator was of self indicating cam-
resistant type and the die carried two sets of graduations with pointer and chart 
edge to edge to avoid parallax. Capacity could be controlled by means of hand 
lever and a maximum load pointer mounted on a separate spindle provided a 
record of breaking loads. For the purpose of testing and gripping of tubes, a 
holder had been designed and fabricated which could be fitted in four-jaw type 
self gripping chuck and attached with the face plate holder. 

Figure A: Avery Torsion Testing Machine 

33 



Journal of Mechanical Engineering 

With the help of hand wheel, a small torque was applied to the specimen 
that was noted directly from the indicator and corresponding angle of twist was 
also noted with the help of Vernier and protractor fitted in the machine. The 
torque was gradually increased up to elasto-plastic regions and corresponding 
angle of twists were noted. Now the torque was released slowly to zero and the 
residual angles of twist (6R) of the deformed tubes were noted. These deflection 
readings were again checked with the help of combination set just after setting 
the torque to zero. The procedure was repeated for number of specimens. 
Springback percentage and residual angle to twist per unit length in percentage 
were calculated for each specimen with the help of equations (24) and (25). 

(B) Work-hardening index 

(I) Linear work-hardening Index: 

Linear work-hardening index has been obtained by the procedure mentioned in 
the paper presented by Dwivedi, et al, [15]. The values of modulus of rigidity 
(G) and plastic modulus of rigidity (a) of the material of the tube has been found 
and given in Table 1. 

(II) Non-linear Work-hardening Index (n): 

To determine the value of strain-hardening index (n) of the strip material, several 
values of shear stress (T) and shear strain (y) in the plastic range are considered 
from the shear stress-shear strain curve. Further, the value of n is computed as 
mentioned below. 

From Modified Ludwik equation we know that 

1 = T° (^) ^ l 0 g T / / T ° = n l 0 g (Gy/To) 
therefore, 

n = log i / io/ log (GyAo) 

After calculating the several values of n, the average value of n has 
been obtained as given in Table A. 

Table A. Mechanical Properties of Tube Material 

Modulus of rigidity (G) 
(N / mm2) 

8.24 x 104 

Yield shear stress (T0) 
(N / mm2) 

108 

Plastic modulus of rigidity 
(a)(N/mm2) 

6.1 x 103 

a/G 

0.074 

n 

1/3 
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