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ABSTRACT 

This thesis is concerned with the existence of positive solutions for second order bound
ary value problems. In particular, firstly we investigate the existence and multiplicity 
of positive solutions for a singular second order scalar Sturm-Liouville boundary value 
problem with different values of A for a function / involve u. Then, we investigate the 
existence of positive solutions of a Dirichlet boundary value problem where the func
tion / involve u and v!. Lastly, we consider the results of positive solutions for singular 
Dirichlet second order boundary value problem where the function / involve u and v! 
in terms of different values of A. The existence results of positive solutions are proved 
by applying the Krasnoserskii fixed point theorem on compression and expansion of 
cones. 
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CHAPTER ONE 

INTRODUCTION 

In this chapter, we will look at some definitions and concepts that are of importance 

for the remainder of the chapters (see Rockafellar (1970), Rudin (1987), Kuttler (2001), 

Kelley and Peterson (2004), Sista (2004) and Lay (2005)). 

1.1 PRELIMINARIES 

Definition 1.1.1. A normed space X is a vector space with a norm defined on it. A 

norm on a vector space X is a real valued function on X whose value at an x G X is 

denoted by ||a;|| and which has the properties 

1. ||x|| > 0, \\x\\ = 0 if and only if x = 0, 

2. ||* + y|| < W + lli/H, 

3. ||c:r|| = \c\ • \\x\\, 

where x and y are arbitrary vectors in X and c is any scalar. The normed space is 

denoted by (X, || • ||) or simply by X. 

Definition 1.1.2. Let X be any nonempty set. A function d : X x X -» R is called a 

metric on X if it satisfies the following conditions for all x, y, z G X. 

(1) d(x,y)>0. 

(2) d(x, y) = 0 if and only if x = y. 

(3) d{x,y) =d(y)x). 

(4) d(x, y) < d(x, z) + d(z, y) (triangle inequality). 

A set X together with a metric d is said to be a metric space. Since a set may have 

more than one metric define on it, we often identify both and denote the metric space by 

(X, d). If the particular metric is not important or if it is otherwise identified, we may 

simply write X. 

Definition 1.1.3. A sequences xn G X is said to be a Cauchy sequence if for each e > 0 

there exists a number TV such that m, n > N implies that \\xn - xm\\ < e. 
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Definition 1.1.4. A metric space is called complete if every Cauchy sequence converges 

to some element of the metric space. 

Definition 1.1.5. A normed linear space, (X, || | |) is a Banach space if it is complete. 

Thus, whenever {xn} is a Cauchy sequence, there exists x e X such that lim \\x — xn\\ = 
n—>oo 

0. 

Example 1.1.1. 

Let J = [0,1]. Then the following spaces are Banach space. C(J) is the space of 

continuous real-valued functions u on J with the norm ||?z||o = max{|u(£)|; t G J} . 

Definition 1.1.6. Suppose Y is a closed subset of a complete metric space, X. Then Y 

is also a complete metric space. 

Definition 1.1.7. Let X and Y be two normed linear spaces and let / : X -> Y be 

linear (f(ax + by) = af(x) + bf(y) for scalars a, b and x, y G X). The following are 

equivalent 

(a) / is continuous at 0. 

(b) / is continuous. 

(c) There exists K > 0 such that \\fx\\Y < K \\x\\x for all x G X (/ is bounded). 

Definition 1.1.8. Let / : X —• Y be linear and continuous where X and Y are normed 

linear spaces. We denote the set of all such continuous linear maps by f(X, Y) and 

define 

11/11 =sup{| | /s | | : |M|<l}. 

If ll/H < oo, then / is called a bounded linear transformation. 

Definition 1.1.9. If Y is a Banach space, then f(X, Y) is also a Banach space. 

1.1.1 Boundary Value Problem 

Definition 1.1.10. A boundary value problem for a given differential equation consists 

of finding a solution of the given differential equation subject to a given set of boundary 

conditions. A boundary condition is a prescription some combinations of values of the 

unknown solution and its derivatives at more than one point. There are four kinds of 

linear boundary conditions: 

Dirichlet or First kind : y{a) = r/i, y{b) = rj2l 

Neumann or Second kind : y'(a) = rji,y'(b) = r/2, 

Robin or Third or Mixed kind : ot\y(a) + a2y'(a) = r)i,fiiy(b) + /W(&) = V2, 

Periodic : y(a) = y(b),y'(a) = y'(b), 
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where a, 6,771,772, ot\, a2, /?i and /?2 are all constant. 

1.1.2 Convex Set 

Definition 1.1.11. A set 5 in Rn is said to be convex if for each x\, x2 € 5, the line 

segment Xxi + (1 — X)x2 for A e (0,1) belongs to S. This says that all points on a line 

connecting two points in the set are in the set. 

1.1.3 Arzela-Ascoli Theorem 

Definition 1.1.12. We say that the sequence of vector functions {^m(0}m=i ,xm ' I -+ 

Rn, is uniformly bounded on an interval / provided there is a constant M such that 

\\xm{t)\\<M, 

for m = 1,2,3...., and for all t e /, where ||-|| is any norm on Rn. 

Definition 1.1.13. We say that family of vector functions {xa(t)} , for a in some index 

set J4, is equicontinuous on an interval / provided given any e > 0 there is a S > 0 such 

that 

\\xa(t) - x Q ( r ) | | < e, 

for all a e A and for all t,r e I with \t - r\ < 6. 

Theorem 1.1.1. For K C C[0,1], K is compact if and only ifK is closed, bounded and 

equicontinuous. 

Theorem 1.1.2. Let K C Rn be a compact. A subset F C C(K) is relatively compact if 

and only if it is pointwise bounded and equicontinuous, where C(K) denotes the space 

of all continuous functions on K. 

Theorem 1.1.3. If a sequence {fm}T *n C(^0 ^ bounded and equicontinuous then it 

has a uniformly convergent subsequence. 

1.1.4 Fixed Point Theorem 

Theorem 1.1.4. (see Krasnoserskii (1964) and Guo and Lakshmikantham (1988)) (Guo-

Krasnoserskii fixed point theorem). 

Let X be a Banach space and let K C X be a cone in X. Assume fii, JI2 ore bounded 

open subsets of X with 0 G fii C fii C ^ and let 

F: Kn(n2\ili)^K 

be a completely continuous operator such that either 

3 
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(i) \\Fu\\ < \\u\\foranyu G K D dtti and \\Fu\\ > \\u\\for any u G K n <9£12 

or 

f»; ||Fiz|| > \\u\\for anyue K Hd^ and \\Fu\\ < \\u\\ for any u G KndQ2. 

Then F has a fixed point in K n (f^V^i)-

1.2 MOTIVATING EXAMPLES 

In this section we present some examples that motivate our study of second-order bound

ary value problems. 

Example 1.2.1. (Boundary Value Problems Arising in Viscous Flow Behind a Shock 

Wave, Zheng et al. (2006)) 

We restrict ourselves to the considerations of perfect gas. It will be assumed that p 

(coefficient of viscosity), K (thermal conductivity) are proportional to T (temperature) 

and that Cp (specific heat at constant pressure) and Pr (Prandtl number, /J,CP/K) are 

independent of T. Consider a plane laminar flow with spatial coordinates (x, j/), corre

sponding velocity components (u, v) and (dp/dx) = 0. For steady flow, the boundary 

layer equations for x > 0 can be written as Mires (1956), Thompson (1972) and Mires 

(1995). 

| ^ + ^ = 0 , (1.2.1) 
ox oy 

du du _ 1 d ( du\ 

dx dy pdy\ dy) ' 

8T dT\ d ( du\ fdu^ 2 

P = pRT. (1.2.4) 

The boundary conditions are 

u(x, 0) = uw, U(.T, oo) = ue, (1.2.5) 

v(x,0) = Q, (1.2.6) 

T(x,0)=Tw,T(w,oo) = Te. (1.2.7) 

Introduce a stream function ip and a similarity variable rj by the expressions 

^^-^1{rlU=^J^-^-)iy. (,.2.8) 
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dxb dip 
From (1.2.8), we get the velocity components u = -7— and v — —-7—. Then substitute 

ay ox 
into (1.2.1)-(1.2.7) to get the momentum and energy equations. By choosing a suitable 

choice of moving coordinate system and by assuming that the fluid is an ideal gas having 

the viscosity and thermal conductivity which both proportional to the temperature, the 

momentums and energy equations are given by 

Momentum equations: 

f'"(v) + f(v)f"(v) = 0, 0 < 77 < +00, (1.2.9) 

/(0) = 0,/ ,(0) = C,/,(+oo) = l. (1.2.10) 

Energy equations: 

T"(n) + Pr • f (1)7(1) = -?L^L(f»(rj))\ (1.2.11) 

T(0) = X,T(+oo) = 1. (1.2.12) 

XL 
Here the prime denotes differentiation with respect to 77, £ = /'(0) = —-, is the 

ue 

velocity ratio parameter, A = Tw/Te is the temperature ration parameter, Pr = /iCp/k 

is the Prandtl number, and 1 < £ < 6 for a shock wave. 

By using the following transformation: 

g(z) = /"(r/^dimensionless shear stress), (1.2.13) 

z — //(?7)(dimensionless tangential velocity), (1.2.14) 

9(z) = T{rj)(dimensionless temperature), (1.2.15) 

and substituting (1.2.13)-(1.2.15) into (1.2.9)-(1.2.12), in terms of /"(/?) < 0,0 < 77 < 

+00, /"(+00) = 0, and (7 - l)Me
2 = u2

e/(CPyW • Te), we arrive at the following singular 

nonlinear two-point boundary value problems where the momentum equations are given 

by 

g{z)g"{z) + z = 0, K z < £ < 6 , (1.2.16) 

0(1)= 0 , ^ (0 = 0. (1.2.17) 

and energy equations are given by 

9"{z) + (1 - Pr)e\z)g'{z)lg = -Pr{n - l)Me
2, 1 < z < £ < 6, (1.2.18) 

0(1) = M ( O = A. (1.2.19) 

Clearly, equations (1.2.16)-(1.2.17) are de-coupled and may be considered firstly, the 

5 

COPYRIGHT@UiTM



solutions then may be used to solve equations (1.2.18)-(1.2.19). It may be seen from 

the derivation process that only the negative solution of equations (1.2.16)-( 1.2.17) are 

physically significant. 

Let t = £ — z, w(t) = —g(t, — t), then equations (1.2.16)-(1.2.17) are changed into the 

nonlinear singular two-point boundary value problems 

t///(0 = ^ , 0 < * < £ - l , (1.2.20) 
w(t) 

w'{0) = 0,w(Z-l) = 0. 

In terms of negative solutions of equations (1.2.16)-(1.2.17), it is seen that only the 

positive solutions of equation (1.2.20) is physically significant. 

The problem is singular at t — £ — 1. Then, it is convenient to consider the boundary 

conditions without singularities which is 

""(' ) = l—ik* o < * < $ - 1 , 
w(t) 

w S(0) = 0,w(Z-l) = 0 = h>0. 

Then, sufficient conditions for existence and uniqueness of positive solutions were es

tablished. 

Example 1.2.2, (Heat Flow, Webb (2005)) 

The existence of positive solutions of a nonlocal boundary value problem arises in 

modelling a thermostat. Consider for example a model for stationary solutions of a 

heated bar 

-u" = g(t)f(t,u),te (o, i), i/(o) = o,pu'(i) + U(TI) = o. 

Adding or removing heat dependent on the temperature detected by a sensor at 77 when 

a controller at 1, the boundary condition at 0 corresponds to that end being insulated. 

The study of this problem is via a Hammerstein integral equation of the form 

u(t)= / k(t,s)g(s)f(s,u(s))ds. 
Jo 

The solution is given explicitly by 

u(t)=P [ g{s)f{s,u{s))ds+ ( (vs)g{s)f{s,u{s))ds- [ (t-s)g{s)f(s,u(s))ds. 
Jo Jo Jo 
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Example 1.2.3. (Membrane Response of a Spherical Cap, Agarwal et al. (2003)) 

The existence criteria for singular boundary value problems are found in modelling 

the membrane response of a spherical cap. The following boundary value problem 

models the large deflection membrane response of a spherical cap 

»"+{W-J)=° 0<(<1' (1'Z21) 

y(0) = 0,2y'(l) - (1 + v)y{\) = 0 , 0 < v < 1, A > 0, (1.2.22) 

which exists in nonlinear mechanics. The radial stress at points on membrane is denoted 

by Sr = y/t, (d/dp)(pSr) is the circumferential stress (p = t2), A is a load geometry 

parameter and v is the Poisson ratio. The nonlinearity in above problem may change 

sign. 

Motivated by the problem (1.2.21) - (1.2.22), Agarwal et al. (2003) presented exis

tence result for 

y" + q(t)f(t,y) = o, 0 < * < i , 

y(0) = y /( l)+^(y(l))> (1.2.23) 

where the nonlinearity / is allowed to change sign, i. e. / : (0,1) x (0, oo) -» R. 

1.3 PROBLEM STATEMENT 

This research is. mainly concerned with finding the existence and multiplicity of pos

itive solutions to the second order boundary value problem by using some properties 

of the Green's function and the Krasnosel'skii fixed point theorem on compression and 

expansion of cones. 

1.4 OBJECTIVES OF THE STUDY 

Our objectives of this research are : 

1) To study the existence and multiplicity of positive solutions to a singular second 

order Sturm-Liouville boundary value problem by applying Krasnoselskii fixed 

point theorem. 

2) To find sufficient conditions for the existence of positive solutions to the second 

order Dirichlet boundary value problem by applying Krasnoselskii fixed point 

theorem. 
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3) To study the existence and multiplicity of positive solutions to a singular second 

order Dirichlet boundary value problem by applying Krasnoselskii fixed point 

theorem. 

1.5 THESIS OUTLINE 

This thesis is structured as follows. In Chapter 2, we will establish the existence and 

multiplicity results for singular second order boundary value problem 

u"(t) + \g(t)f(u(t)) = 0, t e [ 0 , l ] , 

au(0) - (3u'(0) = 0, 

yu(l) + Su'(l) = 0, 

where a > 0, /? > 0, 7 > 0 and S > 0 are all constants, A is a positive parameter and 

/(•) is singular at u = 0. Under suitable conditions, the theorem about the existence and 

multiplicity of positive solutions are obtained by using fixed-point theorem on cone. 

In Chapter 3, we deal with the existence results of positive solutions for second order 

Dirichlet boundary value problem 

u"{t) + \a(t)f(u(t),u'(t)) = 0, te [0,1], 

u(0) = u(l) = 0, 

where f e C (R+ x R, R+) and a e C ((0,1), R+). We assume that the function 

/ depends on u and uf, so our work is new and more general than Erbe and Wang 

(1994), Lee (1997), Avery and Henderson (2000) and Liu and Yan (2006). We give an 

appropriate Banach space and construct a cone which we apply the fixed point theorem 

yielding solutions of the problem. 

In Chapter 4, we also establish new result for a second order Dirichlet boundary 

value problem 

u"{t) + \a(t)f(u(t),u'(t)) = 0, te [0,1], 

i/(0) = u(l) = 0. 

where / is singular at u, v! = 0. Various of A are determined for which there exist 

positive solutions of the singular problem. We also use fixed point theorem for operators 

on a Banach space. We show that all our results are based on the Krasnosel'skii fixed 

8 

COPYRIGHT@UiTM



point theorem on compression and expansion of cones. 
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CHAPTER TWO 

POSITIVE SOLUTIONS TO A SINGULAR SECOND ORDER BOUNDARY 
VALUE PROBLEM 

2.1 INTRODUCTION 

In this chapter, we consider the following Sturm-Liouville boundary value problem 

u"(t) + Xg(t)f(u{t)) = 0, te [0,1], (2.1.1) 

au{0) - (3u'(0) = 0, 

7t*(l) + Su'(l) = 0, (2.1.2) 

where a > 0 , / 3>0 , 7 > 0 and S > 0 are all constants, A is a positive parameter, /(•) 

is singular at u = 0 and g e (C[0,1], (0, oo)). 

The existence of positive solutions of singular boundary value problems of ordi

nary differential equation has been studied by many researchers such as in Gatica et 

al. (1989), Daqing (2002), Wang and Liu (2003), Agarwal and Stanek (2007), Erbe et 

al. (2008), Wang (2011) and Xuan (2011). In Gatica et al. (1989), they proved the 

existence of positive solution of the problem (2.1.1) - (2.1.2) with A = 1 and g(t) = 1 

using the iterative technique and fixed point theorem for cone for decreasing mappings. 

Agarwal et al. (1998) obtained the existence of positive solutions for A on a suitable 

interval for the Sturm-Liouville boundary value problem 

(P(*K(*))' + A/(*, u(t)) = 0, 0 < t < 1, 

aitx(O) - J M 0 K ( 0 ) = 0, 

a2u(l) - fop(l)u'{l) = 0 

by applying the fixed point theorem in a cone. In Wang and Liu (2003), they proved the 

existence of positive solution to the problem (2.1.1) - (2.1.2) using the Schauder fixed 

point theorem. Agarwal and Stanek (2007) established the existence criteria for positive 

solutions of singular boundary value problems for nonlinear second order ordinary and 

delay differential equations using the Vitali's convergence theorem. The nonlinearities 

may singular at phase variable and positive solutions pass through the singularities. 

10 
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In Erbe et al. (2008), they established some criterias for the existence of positive 

solutions for certain two point boundary value problems for singular nonlinear second 

order equation on time scale T 

-(ru*)* + qu* = \f(t,uir) 

au(a) - puA(a) = 0, 

7u(a2(b)) + 6uA(a(b)) = 0, 

where / may be singular at one or both end points by applying the Krasnosel'skii fixed 

point theorem. They assumed either / is continuous on (a, b) x R, if / is singular at b 

or / is continuous on (a, 6] x R if / is not singular at 6. 

Xuan (2011) investigated the existence of symmetric positive solutions for the fol

lowing singular second-order differential equation 

u"(t) + \a{t)f(t, u(t)) = 0, 0 < t < 1, 

u(t) = u(l - *)V(0) - u'(l) = E £ f M(&). 

where A > 0 is a positive parameter, a(i) : (0,1) —> [0, oo) is continuous, symmetric 

and may be singular at t — 0 or t = 1. Wang (2011) considered positive periodic 

solutions for singular systems of first order problem 

*i(0 = -Oi(t)xi(t) + M0/i(*i(0> - , *n(0)> * = 1> •••> n, (2-1.3) 

where A is positive parameter. The existence and multiplicity of positive periodic so

lutions of the problem (2.1.3) were established by using the Krasnosels'kii fixed point 

theorem. 

Motivated and inspired by work of Wang (2011), we are concerned with the exis

tence and multiplicity of positive solution to (2.1.1) - (2.1.2) by applying Krasnosel'skii 

fixed point theorem. This result generalize the work of Henderson and Wang (1997) 

who considered positive solutions for nonlinear eigenvalue problem (2.1.1) with Dirich-

let boundary conditions. 

By a positive solution of (2.1.1) - (2.1.2), we mean a solution u(t) such that u(t) > 0 

for 0 < t < 1. Let X be the Banach space C[0,1] endowed with norm 

||u!| = max \u(t)\. 
11 ' t e [o , i ] ' v n 

Let R = (-ex), oo), i?+ = [0, oo). Our basic assumption is: 

(Al) / : (o, oo) -> (0, oo) is continuous. 

11 
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2.2 GREEN'S FUNCTION AND BOUNDS 

Now we are going to find a positive solution of the second order problem (2.1.1) -

(2.1.2). For the convenience of the reader, we shall show that the solution u(t) is of the 

form u(t) = / G(t, s)P(s)ds where G(t, s) is defined below. 
Jo 

Lemma 2.2.1. Let P G X, then the solution of the following boundary value problem 

u"(t) = -P(t), 0 < t < 1, (2.2.1) 

cra(O) - f3u'{0) = 0, 

7u(l) + <^'(1) = 0, 

is given by 

where 

u{t)= f G(t,s)P(s)ds 
Jo 

G(t,s)= { 
jjfr + S-riiP + as), 

p('7 + 6-'ys)(0 + at), 

0<s<t<l, 

0<t<s<l, 
(2.2.2) 

where D = -y/3 + cry + a6 > 0. 

Proof Writing u"(t) = -P{t) and solving the differential equation (2.1.1) using the 
/•oo 

Laplace transform, we have L (u"(t)) =-L (P(t)) where L (u"(t)) = / e~stu,f(t)dt. 
Jo 

Using integration by part, we get 

L{u"(t)) = [e-stu'(t)]™ + s / u'(t)e-stdt 
Jo 

= [e-°tu'(t)]~ + sL[u>(t)} 

= [e-stu'(t)]^ + s[sL[u(t)}-u(0)} 

= s2L[u(t)} - su(0) - u'(O), 

which implies s2L[u(t)] - su(0) - u'(0) = -L(P(t)), that is 

Taking the inverse Laplace both side of (2.2.3), L~lL{u{t)) = L~l u(0) | u'(0) L(P(t)) 

12 
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we obtain u(t) = u(0) + tu'(0) - / (t - s)P(s)ds, and u'(t) = u'(0) - / P(s)ds. 
Jo Jo 

Using the boundary conditions (2.1.2), we have 

au(0) - (3u'(0) = a (u(0) + (0)«'(0)) - /3u'(0) = 0, 

which implies, 

au(0) - pu'(0) = 0. (2.2.4) 
Likewise, 

7u(l)+<5u'(l) = 0, 

implies 

7 U(0) + (l)u'(0) - I (1 - s)P(s)ds) + S (u'(0) - ! P(s)dS
S) = 0, 

which implies that 

7u(0) + (7 + S)u'(0) = [ (7(1 -s) + S) P(s)ds. (2.2.5) 
Jo 

Solving (2.2.4) and (2.2.5) for u(0) and «'(0), we have 

u(0) = 
a 

_ a J,1 (7(1 - s) + S) P(s)ds 
U[V)~ rf + afr + S) 

Let D = 7/? + 07 + a£ > 0, so 

,j(0) _ H 1 N 1 - * ) + *) ^(*)^ 1J/(0)_
Q/ol(7(l-^) + ̂ ) ^ ) ^ 
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Thus, 

u(t) = u(0) + *u'(0) - I (t- s)P(s)ds 
Jo 

P H (7(1 ~ a) + 8) P(s)ds t to fi (7(1 - s) + 8) P(s)ds f* 
= 3 + 3 JQ(t- s)P(s)ds 

= ^ / (7 - 7* + W + ott)P(s)ds - f (t- s)P(s)ds 

= ^ / (7 - is + 8){P + at)P{s)ds + 1 / (7 - 7 S + «J)(0 + at)P{s)ds 

- [ (t- s)P(s)ds 
Jo 

= ^ / h - 75 + W + at)P(s)ds - ^ / (7/3 + a 7 + a<J)(* - 5)P(s)ds 

1 Z"1 

= "D / P(l + S~ 1$ + as^ + 6~ ~ft)p(s)df> + n / (7 - 7« + W + at)P(s)ds 

= — J (P + as)(i + 6- yt)P(s)ds + — / ( 7 - 7* + W + at)P(s)ds. 

Therefore, 

M(*)= / G{t,s)P{s)ds 
Jo 

where G(*,s) is given by (2.2.2). It is clear that G(t, s) >0i f ( i , s ) G (0,1) x(0,1). • 

Lemma 2.2.2. The function G(t, s) satisfies the homogenous differential equation —u" = 

0 and the boundary conditions (2.1.2) for fixed s. 

d2 

Proof. Since G(t, s) is polynomial of degree one, then it satisfies —G(t, s) = 0 for all 
Cut 

( M ) € [ 0 , l ] x [ 0 , l ] . 
Note that differentiation G(t, s) is with respect to t. 

For 0 < t < s < 1, G'(t, s) = — «(7 + 6- -ys) so that 

aG(0,s)-pG'(0,s) = 0. 

Also for 0 < s < t < 1, G'(t, s) = -jzi{P + as) so that 

7(7(1, s) + JG'(l,s) = 0. 

Lemma 2.2.3. For any fixed s E [0,1], the function G(t,s) is continuous for every 

t e [0, l]. 
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Proof G(t, s) is continuous everywhere on [0,1] x [0,1] since it is continuous at the 

point t = s. Hence, the proof is complete. • 

Lemma 2.2.4. —G(t, s) has a jump discontinuity with a jump of factor — 1 at the point 
at 

t = s. 

Proof We show that limit of —G(£, s) as t approaches s from above differ from its 
at 

limit as t approaches s from below by —1. 

G'(s+,s) - G'(s-,s) = Hmt_>s+G'(t,s) - limt_>s-G'(M) 

-(--y(P + as)) 

-7/? — c*7 — ad 

= ^(~7(/3 + as)) -a(j + 6- 75) 

7/3 + cry + a S 
(7/? + c*7 + a<J) 
7/? + cry + c*5 

= - 1 . 

Lemma 2.2.5. De/me 
J G ( M G(l,s) 

u — 111111 

r/ze/z 0 < a < 1. 

cr = mm \G(s ,5 ) 'G(s 

Proo/ Since G(«, 5) > 0 for all (i, 5) G [0,1] x [0,1], a > 0. 

Case (i) If 5 = 0, a = min < 1, rf()\{ f > which implies 

= G ( l 1 0 ) = _ t f 
a G(0,0) 7 + <S 

Case (ii) If s = 1, a = min < 1, , ' ( >, which implies 
I &(M)J 

0(0,1) /? 
a G(l , l ) 0 + a 

Hence, the proof is complete. 

Lemma 2.2.6. For all s, t G [0,1], 

aG{s,s) <G(t,s) <G(s,s) 

where 

0 < a — min K1—,—L,^ < i f 7 + <? - 7* ft + a t ) 
\ 7 + <5 - 7.S' ft + as J 
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Proof. For 0 < 5 < t < 1, 

G(t,s) = (7 + S - 7Q(/3 + as) 
G(s, s) ~ (7 + S - 7s)(/3 + as) 

7 + ^ — 7/ 
7 + <$ — 7s 

For 0 < /, < s < 1, 

G(t,s) = (7 + S - 7s)Q3 + aQ 
C(s, s) - (7 + 5 - 7.s)(/? + as) 

_ ft + at 
~~ 13 +as' 

Case (i) For 0 < s < t < 1, G'(t,s) = -j^(P + as) < 0, which implies that 

G(t,s) is a decreasing function of t, so that G(t,s) < G(s,s) and also for t < 1, 
G(M) ^ G(l,s) ^ . . . . .. 

; > —-, > a which implies 
G(s,s) ~ G(s,s) ~ V 

aG(s,s) < G(t,s). 

Case (ii) For 0 < t < s < 1, G'(t,s) = -^(7 + S - 7s) > 0 implies that G(t,s) is 

an increasing function of t, so that G(t,s) < G(s,s) and also for t > 0, , ' ' ; > 
G(s,s) 

G(0,s) 
—;—f > a and so we have 
G(s,s) 

aG(s,s) <G(t,s). 

Therefore, aG(s, s) < G(t, s) < G{s, s) for 0 < t,s < 1. • 

2.3 PRELIMINARY RESULTS 

In this section, we will show some lemmas that are useful in the proving the existence 

and multiplicity of positive solutions for the problem (2.1.1) - (2.1.2). Define the cone 

K in X by 

K = {ueX:u(t) >0,te [0,1] and min u(t) > a \\u\\} 
te[o,i) 

where a is defined in Lemma 2.2.6. 

Let £lr = {u e K : ||u|| < r} for r > 0. It is clear that dttr = {u e K : \\u\\ = r}. 

Transform the problem (2.1.1) - (2.1.2) into a fixed point problem. Consider the operator 

T: K -> X defined by 

Tu(t) = X f G(t, s)g(s)f (u{s)) ds, t G [0,1]. 
Jo 
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Lemma 2.3.1. (see Wang (2011)) Assume (Al) holds. Then u G K is a positive fixed 

point ofT if and only ifu is a positive solution of (2.1.1) - (2.1.2). 

In the next lemma, we show that T : K -» K is completely continuous. 

Lemma 2.3.2. Assume (Al) holds. Then T(K) C K and T : K —• K is completely 

continuous. 

Proof. Let ueK, then Tu{t) > 0 on [0,1] and 

Tu(t) = \ f G(t,s)g(s)f(u(s))ds 
Jo 

>a f G(s,s)\g(s)f(u(s))ds 
Jo 

> ACT / max G(t,s)g(s)f(u(s))ds 
Jo *e[o,i] 

>crAmax / G(t,s)g(s)f(u(s))ds 
^[Oi1] Jo 

= o \\Tu\\. 

Thus Tu £ K if u e K and hence T(K) C K. A standard argument can be used to 

show that T : K -> K is completely continuous. Let u e K and e > 0 be given. By 

continuity of / , there exists 8 > 0 such that for any y e (0, oo) with \u(t) - y\ < 6, 

t € [0,1], then | / (u (0 ) - / (y ) | <£• L e t ^ e K with ||u—u;|| < 6, then \w(t)-u(t)\ <S 

foralUG [0,1]. 

\(Tu)(t) - (Tw)(t)\ = \f G(t,S)g(s)(f(u(s)) - f(w(s))ds 
Jo 

<e\ I G(t,s)g(s)ds. 
Jo 

Thus ||Tiz - Tw\\ < eX G(t, s)g(s)ds and T is continuous. Let {un} be a bounded 
Jo 

sequence in K. Since / is continuous, there exists N > 0 such that \f{un(t))\ < N for 

all n where t G [0,1]. 

\(Tun)(t)\ = \X f G(t,s)g(s)f(un(s))ds\ 
Jo 

<X f \G(s,s)g(S)f(un(s))\ds 
Jo 

<NX f G(s,s)g{s)ds. 
Jo 

By choosing subsequences, there exists {Tun.} which converges uniformly on [0,1]. 

Hence T is completely continuous mapping. • 
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Define /* : [1, oo) —• R+ be the function given by 

/*(0) = max {f(u) : u G fl+, 1 < \u\ < 9} . 

It is easy to see that /*(#) is nondecreasing function on [1, oo). Our next lemma gives 

some relationships between the functions / and /*. The following lemma is essentially 

the same as Lemma 2.8 in Wang (2003). 

Lemma 2.3.3. (see Wang (2003)) Assume (Al) holds. Then f^ = f^. 

In the next two lemmas, we get lower and upper estimates on operator T. Define 

T = a2 J G(s,s)g(s)ds. (2.3.1) 
Jo 

Lemma 2.3.4. Assume (Al) holds and let rj > 0 be given. Ifu G Kandf(u(t)) > u(t)rj 

for t G [0,1], then 

\\Tu\\ >\Tri\\u\\. 

Proof From the definitions of Tu and Ky it follows that 

Tu(t) = \ I G(t,s)g(s)f{u(s))ds 
Jo 

>Xa[ G(s,s)g{s)f(u(s))ds 
Jo 

> Xa / G(s,s)r)u(s)g(s)ds 
Jo 

> Xa2r] \\u\\ / G(s,s)g(s)ds 
Jo 

= XTrj \\U\\ , 

where T is defined in (2.3.1). Hence ||Ttx|| > XTrj \\u\\ . 

This completes the proof. • 

Lemma 2.3.5. Assume (Al) holds. Let r > 0 and if there exists e > 0 such that 

f*(r) < er, for any r > 0, then 

\u\\ / G(s,s)g( 
Jo 

Tu\\ < Xt \\u\\ I G{s,s)g(s)ds for u G d?Lr. 
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