

UNIVERSITI TEKNOLOGI MARA

**IDENTIFICATION OF TICKS, LICE
AND TICK-BORNE BACTERIA
FROM SELECTED RUMINANT
FARMS IN PENINSULAR
MALAYSIA**

ABDUL RAHMAN KAZIM BIN AZLI

Thesis submitted in fulfilment
of the requirements for the degree of
Master of Science
(Medicine)

Faculty of Medicine

July 2024

ABSTRACT

Ticks are obligate haematophagous arachnids that feed on a wide range of hosts, while lice are permanent parasitic insects that infest on a specific host species. In Malaysia, previous studies on ticks and lice were conducted. However, not much was known on these parasites in farm ruminants, particularly their prevalence, distribution, diversity and tick-borne pathogens that may affect both humans and animals. The tick and louse collection were carried out on 28 farms situated in four regions of the Peninsular Malaysian, namely the central, northern, southern, and eastern regions. Our findings revealed that among the farm ruminants, ticks were exclusively infesting cattle whereas lice feed on goats and sheep. The Southern cattle tick, *Rhipicephalus microplus*, emerged as the most prevalent species, accounting for 99.06% of all tick specimens collected. Other identified species included the red tick, *Rhipicephalus haemaphysaloides* (0.47%), the bispined cattle tick, *Haemaphysalis bispinosa* (0.39%), and Wellington's poultry tick, *Haemaphysalis wellingtoni* (0.08%). For lice, *Bovicola caprae* was the most prevalent species (90.05%), followed by *Linognathus africanus* (7.28%), *Bovicola ovis* (2.49%) and *Haematopinus quadripertusus* (0.18%). Both *Rhipicephalus microplus* and *Bovicola caprae* exhibit extensive geographical distributions across the country, being detected in all four regions and in substantial numbers. Three pools of *R. microplus* were found to be positive for *Borrelia* species via PCR, specifically identical to *Borrelia theileri*, marking the first report of this occurrence in Malaysia. No *Rickettsia* and *Bartonella* pathogens were detected in the collected ticks. This study serves as a foundational step toward mitigating the potential impact of ectoparasites on farm animal health and human welfare in Malaysia.

ACKNOWLEDGEMENT

I would like to thank Prof. Med. Dr. Dennis Tappe from Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany for the funding (100-TNCPI/INT 16/6/2(005/2020)) and Assoc. Prof. Dr. Lucas Van Lun Low for the technical advice throughout my Master study. I would like to extend my sincere gratitude to Dr. Sangeetha D/O Sarvanathan from Pusat Ternakan Haiwan (PTH) Ulu Lepar, Mrs. Aznida binti Che Ali from Ladang 16, Universiti Putra Malaysia (UPM), Mrs. Suriyah binti Ramli from Institut Biodiversiti Veterinar Kebangsaan (IBVK), Mrs. Sabariah binti Basir and Dr. Mohd Asraf bin Asmat from Institut Veterinar Malaysia (IVM), Mr. Taufik bin Mohd Noor, and Mr. Muhammad Lutfi bin Zakaria for granting permission to visit the farm sites. I would also like to express my gratitude to the Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), Sungai Buloh campus, Malaysia, and the Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, for their aid throughout this research. Moreover, special thanks to my family, especially my mother Mrs. Rohaidah binti Abd Rahman, my uncle Mr. Mohd Taupik bin Md Zain, my brothers Abdullah and Muhammad, and my cousins Hidayah, Nazmi, and Saufi, for their encouragement and undying support throughout the writing of this thesis. Lastly, I would like to dedicate this thesis in loving memories of Black, Koko and Tiger.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xv
LIST OF NOMENCLATURES	xvi
CHAPTER ONE : INTRODUCTION	1
1.1 Background of project	1
1.2 Problem statement	2
1.3 Research questions	3
1.4 Research objectives	3
1.5 Research hypotheses	3
1.6 Significance of the study	4
1.7 Scope and limitations of the study	5
CHAPTER TWO : LITERATURE REVIEW	6
2.1 Overview of ticks	6
2.2 Ticks and tick-borne pathogens in neighbouring countries to Peninsular Malaysia (Thailand and Singapore)	10
2.2.1. Thailand	10
2.2.1.1. <i>Hard ticks in Thailand</i>	10
2.2.1.2. <i>Soft ticks in Thailand</i>	13

CHAPTER ONE

INTRODUCTION

1.1. Background of project

Diseases caused by tick-borne pathogens are a growing concern around the globe (Parola *et al.*, 2008). Malaysia, as a tropical country, is not excluded from the threat of tick-borne pathogens but serves as an ideal habitat for a wide variety of ticks. Ticks are small arachnids that are capable of transmitting pathogens of many infectious diseases such as anaplasmosis, rickettsiosis, babesiosis and many arboviruses (e.g., tick-borne encephalitis viruses) (Service, 2012). Despite its their prevalence and pathogenicity around the globe, there is little regional information on tick diversity and distribution in Malaysia, particularly in areas where high risk groups live (e.g., the farm population).

A considerable amount of literature has been published on human and animal cases of tick infestations (Indudharan *et al.*, 1995; Indudharan *et al.*, 1996; Indudharan *et al.*, 1999; Srinovianti and Raja Ahmad, 2004; Amin *et al.*, 2007; Mariana *et al.*, 2008; Lazim *et al.*, 2012; Shibghatullah *et al.*, 2012; Abdul Rahim *et al.*, 2013; Hamat *et al.*, 2017; Rajinder and Nik Adilah, 2017). Furthermore, there are several seroprevalence and molecular studies for tick-borne pathogens on both humans and animals (Rahman *et al.*, 2010; Koh *et al.*, 2015; Khoo *et al.*, 2017; Khoo *et al.*, 2018; Prakash *et al.*, 2018). Even so, these studies are limited in their exclusivity, in which they provide inadequate insights to the overall distribution of ticks and their pathogens in Peninsular Malaysia. For instance, most of these studies focus on domestic and wild animals, as opposed to farm animals where their interaction with humans is common. Secondly, these tick surveillances prioritise more on the indigenous community, and few were done on farm workers, who are also one of the high-risk groups for tick-borne disease transmission.

With such few fundamental data, it is difficult to conduct a risk assessment of tick-borne diseases among Malaysians. Therefore, this study provides an essential insight on the tick and tick-borne bacteria prevalence and distribution in the Peninsular Malaysia.