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In engineering design, structural defects such as cracks can lead to
catastrophic failures in machines and equipment. This study investigates
the uniaxial stress state of an infinite sheet weakened by two elliptical
holes with linear cracks. Due to the complexity of the geometric
configuration and the absence of known conformal mapping functions
for such regions, this problem has not been addressed in previous
research. We solve a plane elasticity problem for a complex geometric
configuration featuring two elliptical holes with linear cuts using the
theory of complex variables and conformal mapping functions. The
solution involves solving a system of linear algebraic equations derived
from the theory of complex variables and Kolosov-Muskhelishvili
potentials. By expanding the functions ¢(z) and w(z) into series, we
obtain an analytical solution and provide numerical examples to
illustrate key theoretical aspects. The coefficients of the analytical
functions are determined, and well-known elasticity theory formulas are
applied to compute stress components at characteristic points. This
research presents a novel approach to solving this specific problem, as
conformal mapping functions for such complex configurations have not
been previously established.

INTRODUCTION

Conformal mapping has numerous applications in solving practical problems in the field of mechanical
engineering with the use of new functions of the theory of complex variables for different areas having a
complex geometric configuration. In this article, the problem is solved for the first time using new functions
of the theory of functions of a complex variable. The article deals with the stress-strain state of an infinite
isotropic sheet, weakened by two symmetrical holes of complex configuration and with linear cracks. The
presented product has a three-connected area, bounded from the inside by two elliptical holes with semi-
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axes a and b. The outlines surrounding these ellipses are designated L, and L;, respectively. Outside, the
square or endless strip is bounded by two parallel lines. The centres of the elliptical holes are located on
the real axis Ox, and the distance between these centres is 2/. The origin of the O coordinate system is in
the middle of the centres O; and O;. Coordinates of the ends of linear cracks: (I_1+e) for the hole on the
right and (I_1+e) for the hole on the left. Straight cutouts (cracks) lie on the Ox axis. The holes, i.e., ellipses
from the inside, are not subject to external stress. A tensile force with intensity p is applied to the infinite
sheet along the ordinate. In the study of the uniaxial stress state of an infinite sheet with complex geometry,
weakened by elliptical holes and linear cracks, it is important to focus on the presence of these elliptical
holes and linear cracks in the sheet’s geometry, which leads to significant stress concentration in these
areas. This can result in undesirable local increases in stress, potentially causing material failure or
deformation.

The problem studied in this area covers the analysis of an infinite strip with a complex geometric shape,
which looks like an ellipse. Mukhopadhyay & Mishra (2024) determined that an ellipse has two semi-axes:
major and minor. The researcher also determined how these semi-axes affect the behaviour and
characteristics of the elliptic region. As part of the study, Guo et al. (2024a) determined that two symmetric
cracks located on the real axes of the ellipse are also accounted for. These cracks have a significant impact
on the behaviour and characteristics of the area under investigation, which requires special attention during
the analysis. Issues that require further study include the development of conformal mapping. Such a
mapping is important for simplifying complex geometric shapes and analysing their properties. Another
important task is to analyse the conformal mapping function. These functions simplify the problem by
converting the complex configuration of a cracked ellipse into a simpler form, which facilitates further
analysis and calculations.

Li et al. (2024) and Wang et al. (2024) analysed and developed strategies to preserve the geometric
characteristics of the area. They determined the shape of this area, which in this case is an ellipse with
cracks, which is key to accurate research and analysis. Wu et al. (2024) analysed and established the
correlation between the number of selected conformal mappings. The author identified how these mappings
could simplify the area, transforming it into a more analytically friendly form. Issues that require further
study include assessing the impact of transforming a problem into a simplified form. After converting the
area to a more convenient form for analysis, it is necessary to determine how this will affect the application
of standard methods to solve the problem. Further research is needed to verify the stability of the results.
After the results obtained for the simplified domain are transferred back to the original form, it is necessary
to check their accuracy and stability to ensure the final solution. Another topical issue in this area is that
the second problem uses analytical regular functions from the theory of complex functions to solve a
specific problem. This can be used for specialised mathematical methods that simplify and accurately solve
the problem, which can be substantial for analysing complex systems or geometric configurations.

Cao et al. (2024) presented a methodology for determining optimal application rates using the theory
of complex variable functions. This theory studies functions that are analytical (or regular) on the complex
plane, which was used to develop accurate and efficient methods for solving problems. Zhao et al. (2024)
and Lawlor et al. (2024) analysed analytical functions, which are functions that have a derivative at every
point in their domain of definition and are continuous. They showed that the use of such functions can
simplify the solution of problems involving complex geometric areas or conditions that are difficult to solve
directly. The effectiveness of different formulas for solving the problem needs to be further studied. For
this purpose, certain analytical functions are selected that best meet the conditions of the problem and help
to optimally solve the problem.

Research into the development of hardening technologies may involve the selection of functions with
specific properties, such as unit functions, simple polynomials, fractional rational functions, or other
specialised functions. This can be used to adapt the methods to the specific conditions and requirements of
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the task to achieve the best results. The authors' goal is to study the stress-strain state of an endless strip
with two elliptical holes and two symmetric cracks.

MATERIALS AND METHODS

This paper presents the essential equations for calculating the stresses at critical locations within the cross-
sections of the plate. The system of linear algebraic equations was solved by representing the functions ¢(z)
and y(z) as series expansions. During the study, an analytical solution was obtained, and numerical
examples were given to illustrate important aspects of the theory. By solving these linear algebraic
equations, the coefficients of the analytical function were found, and the well-known formulas of the theory
of elasticity were used to determine the stress components, and the stress components were also found at
the characteristic points of the sections.

A qualitative analysis of stresses and deformations was conducted, and classifications were created,
which allowed the identification and systematisation of the main factors affecting the stability of structures
with complex geometry, particularly the presence of elliptical holes and linear cracks, leading to stress
concentration and potential material failure. This enabled the development oftargeted methods for effective
protection and restoration of structures in the design of engineering tasks, where constructors often
encounter various defects in structures, particularly cracks. The primary focus was on investigating and
classifying the threats associated with the use of various strengthening technologies and methods within
the study. The study included a comparative analysis and critical review of various technologies applied to
solve a plane problem in elasticity theory with a complex geometric configuration, weakened by two
elliptical holes with linear cuts. The effectiveness was evaluated by solving the problem, which was
addressed through a system of linear algebraic equations using the theory of complex variables and
Kolosov-Muskhelishvili potentials (Table 1).

Table 1. Symbol definitions

Category Symbol Description

Geometric Parameters z Complex coordinate in the physical plane

Geometric Parameters &L é: Complex coordinates in the mapped plane (unit circles)
Geometric Parameters L L: Contours of the right and left elliptical holes, respectively
Geometric Parameters ! Half-distance between hole centres

Geometric Parameters ai, b: Semi-major and semi-minor axes of the elliptical holes
Geometric Parameters A, A2 Mapping parameters, where A; = A, = (a; + b1)/2
Complex Functions 0(2) Primary complex potential function

Complex Functions w(z) Secondary complex potential function

Complex Functions x(2) Modified potential function, defined as x(z) = Y(z) + z- ¢'(2)
Complex Functions §((A)) Boundary condition function on contours L; and L.

Stress Components Ox, 0y Normal stress components in x and y directions

Stress Components Ty Shear stress component

Stress Components o', 6,°, 1 Applied stress components at infinity

Stress Components p.q Applied forces in different directions

Series Coefficients a, bk Unknown coefficients in the series expansions

Series Coefficients I, E,, L, Coefficients in the conformal mapping functions
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The key parameters of the study were determined, including the geometric characteristics of the plate,
the size of the elliptical holes, and the location and length of the linear cracks. The load conditions and
boundary conditions for the plate were also established, which were used to accurately formulate the
problem and ensure the correctness of further analysis. The conditions established account for both static
and dynamic loads, which can be used to assess the real impact of defects on structural stability under
conditions close to operational ones. The structural stability was assessed, and the stability of the structure
was analysed, addressing the stress distribution obtained at the previous stage. The analysis identified
potential areas of cracking or defects and assessed the risks of further expansion. The structure was tested
for strength and stability to determine whether it meets the established safety requirements. Additionally,
an analysis was carried out to assess the impact of parameter variations on the overall stability of the
structure, which allows for a more complete picture of its changes under different loading conditions.

The first task was to consider an infinite strip with a complex configuration in the form of an ellipse
with large and small semi-axes, as well as two symmetric cracks located on the real axes. For this purpose,
the conformal mapping functions were found. The second task was to solve the problem using analytical
regular functions of the theory of complex variables. Next, these contours were transformed into unit
circles. After complex mathematical calculations, the problem was reduced to a system of two linear
algebraic equations. The first few terms (coefficients) of these equations are then stored. To determine the
normal and tangential stresses, we used special formulas from the plane problem of elasticity theory and
calculated the stress components at certain points (Fig 1).
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Fig. 1. Stress-strain state of infinite isotropic sheet weakened by two elliptical holes with linear cracks.
The problem begins with establishing the boundary conditions that must be satisfied on the hole

contours. As is known, the solution to such problems is accomplished by finding complex potentials ¢(z)
and x(z) as boundary conditions, expressed in Equation 1:

PO+ (-0 9'() +x(®) =f(t,t) (1
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These boundary conditions differ slightly from the first boundary conditions shown in Equation 2:

() +t.o' () + () = f(t,7) @)

This differs from the standard first boundary condition by introducing the modified function x(z). To
simplify the mathematical treatment, the modified potential function is introduced in Equation 3:

x(2) =Y(2) +2¢' (2) 3

This substitution transforms the boundary condition into a more convenient form for analysis. By
applying the conjugate expression of y(z) and substituting it into Equation 2, the boundary conditions can
be transformed into the form of Equation 1. In Equation 1, ¢ represents the affix of points of the contours
L; and L. It should be indicated that the function f (t, f) is defined as follows in Equation 4:

£(67) = —p%(f+t)i c @)

If the forces p and ¢ are applied to the sheet in both directions, then the expression can be written for
f(t,t) as follows Equation 5:

fleD)="=FT-=—.t+C (5)

In this case, 0y}, 0, and 77 values are as below for solid sheets: o) = q; o) = p; 77), = 0. And the
constant C is negligible since it does not affect the stress state of the sheet. The stress state of the sheet
during observation is determined by using Equation 6:

o, = 0, = 0y + g, + 4Relp'(2)], 0, — 0, + 2i1,,

= 00— 00+ 2012, +2[(Z — 99" (2) — ¢'(2) + 1’ (2)] ©)

0

where, the stress compony oy, 0y and 73, 75, 07,0 and 75, belong to a solid sheet. And the stress

components are as below for the problem in this case, Equation 7:

0l =0,00=0,70, =0 @)

The function ¢(z) and y(z) can be determined as follow Equation 8:

01(2) = 91(2) + 92(2); x(2) = x1(2) + x2(2) (®)

where, the functions ¢;(z) and y;(z) are holomorphic functions out of hole Z; and the functions ¢»(z) and
x2(z) are holomorphic functions out of hole L,. The functions can be written as follows, since those functions
are missing at infinite, Equation 9:

[0e] (00}

0@ =) 0 0.0 = ) api* ©)

k=1 k=1
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0@ = ) b @ = ) biE"
k=1 k=1

The stresses on the sheet, which occurred due to geometrical and force symmetry are even functions of
the variable z. a,, o, coincide at symmetry points of the real axis (e.g. -(/-R) < z < (I-R) points). From
Equation 5, ¢(z) and y(z) are not even functions based on the variable z. Then, it can be written as the

following expression Equation 10:

o(=2) = —p(2); x(-2) = —x(2) (10)

If Equations 8 and 9 are substituted in these conditions and the coefficients of the same variables &;
and & are equalized, can get the following expression (Equation 11):

bi = (=D**'b, (I

In this case, the functions ¢(z) and y(z) are as follows (Equation 12):

[ee)

P = ) alér + (DM
o (12)

X() = ) Bl + (~DFggH
k=1

Out of contours, L; and L, are mapped to the exterior of a unit circle by using the following formulas
(Equations 13 and 14):

2-l=An§ ) ™ (13)
n=0

2= A8 ) T & (14)
n=0

where, 4; = A; = (a;+b;)/2 a; and b; a, and b, are semi-axes of ellipses with L, and L, contour. The
function {1 = y(z) which is inverse to conformal mapping functions in Equations 13 and 14, can be
determined as follows (Equations 15 and 16):

o]

e Sn ()

f=tly ()

I1,,, E,, (Equations 13 to 16) are included, and the remaining values can be determined using methods
described in the literature [9]. Substituting expressions (Equations 12 to 14) in the boundary condition
(Equation 17):
https://doi.org/10.24191/jmeche.v23i1.5703
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Z @ (675 + (=D + (¢ = T)
k=1
= 4 [0 () + R R (57| + (a7
k=1
+z be|(&7) + (0¥ ()] = F(£D) LG = 1.2)
k=1

This equation seems to represent a boundary condition on the contour Z; of a hole in a complex plane.
The terms involve infinite series expansions of coefficients a,and b, which are likely related to the Laurent
series expansions of the complex potentials ¢(z) and Y (z). The relationship between &; and &; can be
written based on formulas in Equations 15 and 16 in the contour of right hole &, = 7; and (Equation 18):

z—l=t*=Alrlean” (18)

This equation appears to describe a conformal mapping that transforms the complex plane. Here, z is a
point in the physical plane, 7 is a point in the transformed plane, and 4 and 77, are coefficients related to the
mapping function (Equation 19).

z—l=t*=Alrlenrl_n
n=0

G 26|

A, ) z+1

n=0

-k

[oe]

&=

( )| m )

n=0

() NES A E.
- n n
z+1 [Z;?oEysk ] z+1 = z+1
S R O]
n=0
where (Equation 20):
L, + Z Ly n EF =0
n1—1
(20)
E® = z E(l) Eflknlf
ny=1

n=0,12,..,kk=23,..

Equation 20 provides a condition that the coefficients L, and Er(lk)must satisfy. This condition ensures
that the boundary conditions or other constraints in the transformed plane are met. Then, based on 2/ > z-1
in expression Equation 18, if the arrangement is done, it can be found as follows Equation 21:
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e} v 0] [o2)

EZ_R:Z(LV""(ZAL) ZZCLV"‘( l+2l) Z ( )ﬁz

ZLV k( )chl (z—l) ZLV k( ) i o [A 161 nz?nn.s‘;n]kl

- ookLV k(zl) Z’ﬁ =o€ (zl)k1 el N

k1 oo

-k

A o
Saeall) Sesl) Sorc-
k1=0 n=0
C Al kg (k v
Z%d)ZﬂF)Z Y 617 =
- i 20 e 1)
oY) co kq
A v (A
=) L) S el
Y=k k1=0
Z E”( ) - (z - l)

:z (z—l)

o

Y tae(5). Y Y ez)
= Z Erl-q)1(v1) + z 1 L@, (n)
v1=0 v1=1

Some notations were done as follows (Equation 22):

o V[ o
A
o= () | Y e () e,
v=k

| k1=v1

(22)

[¢] vV [ o
A A
o= Yo (B) | et ()i,
v=k | k1=0

To establish the relationship between & and &, analogically, the variable &; can be defined by variable
&; (Equation 23):

o -k
— z—1 Eni" (A 1
Ay klzo Do<z—l) 1/(z— ) [Z (A—ll)] 23)
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(k)
n where all coefficients are determined following the condition (Equation 18). Since it is 2/ > z+,
the expression (Equation 20) can be written as follows (Equation 24):

zw ) 2 ) =Y eelB) (1Y

k1=0
oo oY) kq
A\Y ky (A2-§2- Yo - 5 24
S ) &—ww( e e
v=k k1=0
o) 4 v co v+kq 4 Ky co
Sl S el e S o
v=k k1=0 n=

0
= 25;1-¢3(V1) + ZEZ—V1'¢4(V1)

where (Equation 25):

q>3(v1>=§Lv_k( 4y z< 1yt (42)" e

_Vl

o (vl)—ZLv (5 Z( e e (82)" nie

w@-w@ _ g Treo M 67" — Ay 6T
0w®  AXR (LRI,
G e 5™ — &L G 1 E1)
- Zk o1 = k). 5(1

—&Zn & ZLk -6 Zn flsz fl—flz niLk.ff-"— 25)
g 2“ flsz f’”n—aZHniLm-fr—f; o ZL”@—

k=0 n—

[o9)

—Szlz Zanf1 +€1Z sz+n€1 $1 251 ZH Ly =
= 51-2 f;”-Z My Loy + 51251”-2 My Ly = fflsz-Vs(V) =
v=0 n=v w V=1 n=0 v=0

DR AR AR WA AO B AN A
v=0 v=1 v=0
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where:

Vl(v)—zn an,vz(v)—zn an.vs(v)—zn Ly

L, +2Lnn1 I, = 0; I, = (1 —k).II,

ni=1

By considering the boundary conditions Equations 20 and 26 on the contour of the right hole (i. e. on
the contour L;), the expression (Equation 19) can be written as follows (Equations 26 and 27):

Z 51 " Oy (vy) + Z Evl @,(v,)

vi=1

|A1 len T ALE ZH 51]
+, Zfl AOR Zfl Vg(v){Zak(—k)el“+Z(—1)k(—k+1)1*

k=1

Faen| ) ET O ) + Z £ 0, ) {Z a(—k) £ 26)

v1=0 vi=1 k=1

+ Z(—nk. (1 —k).ap_y *

* i & (v) + i & @y (v)

v1=0 vi=1
p . -
- —EIAl.flz M &7+ A6 ) nn.sfl
n=0 n=0

Equation 26 represents a boundary condition or constraint that must be satisfied on the contour of the
hole in the transformed plane. This equation involves the complex potentials @;(v) and @,(v), and it ensures
that the stress and deformation fields meet the physical constraints of the problem.

+§: {;".i V*W).®;(v+k) = i &k Vo (k) + i &V (k)
V=0 v=0 k=1 k=0
Yy, (V)Z @ (—h)EL 27)
ZVl(V)Zak( k)& V_ZV1(V)§: Apyy(M—V)ET =
v=0 n=v
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- i A0 Z Gy = V)E"
v=0 n=0 (o) e’ o) o)
F D)) yn(n =V = ) &) V() (- )+
o v v=0 n=1 o n;o v=n
FD Y RO Gy (mn =) = D G0+ Y V)
n=1 v=0 n=0 n=1

where (Equation 28) is required to maintain consistency with the boundary conditions:

V@) = ) V0. @yoy = v); Vs() = ) V(). (—1 = V);

251 ). Z £ D3 0n) = Zvl(v) Z £ 05 m)

v1=0 v1=0
- Z v, (v).z £ DI (n—v) = (28)
o n v=0 n=v o
IOWOLEDEPN A
n=0 v=0 n=0

where (Equation 29):
V(n) = Z V,(v). &% (n —v); Bi(n) = Z(—nk. A —k).ap_,. D)

Zfl M), Z & d>*(v1>—2v1(v) Z £ 0

vi=1 vi=1

ZVl(v) Z &8 dL(v+n)

n=-v (29)

ZVl(v) Zsfl O (v— n)+ZV1(v) Zs gLo;(v+n) =
Zfl .Zs Vi (v). @5 (v —n) +Zfl ZVl(v) ed(v+n)
Zsl v7(n)+2¢’1 Vo)

if vi=0, in this condition € =0 and if v; # 0, in this condition £ = 1 (Equation 30):

V,(n) = z eV, (V). DL(v — n); Vi(n) = Z £V, (). D5V + ) (30)
v=n v=0
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B3(0) = ) (~1% (1~ k). a1 @, ()
DEVOD @ (h.E =) V). . (k).
v=0 k=1 w V=0 k=0
= Z V') Z Gy (1= V) ]
[ee) n = n=
=D EH D V) (-n - V)—Zfl Vo)

n=0 v=0 n=0

where:

Vo(n) = Z VW)t (=1 =) V) = 1.V (v — 1) = V(v + 1)

v=0

ifv<2,&=0.ifv>2,¢g =1 (Equation 31):

251 V). Z @7 (vy). f_vl ZV ). Z O (vy). E_(VI_V)

v1=0 v1=0

ZV W). Z O (k +v). &7 =
- - k=-v
=S vw. Y ew-k.gk +Zv (v)Zcb W+ k). (1)
v=0 v1=0

Zfl ZV(v) v~k +

FY EE Y VL0 + ) = Z £ Vo0 + ) &%y (B)
v=0 v=0 k=1 k=0

In Equation 32, we define the necessary conditions for the system to satisfy the boundary constraints,
ensuring the solution is physically consistent:

Vo) = Zv ). B = k); Vg () = Zv V). B+ 1)
Zfl V). Z & @;(v1)=2v*<v>.z £ @) 32)
=i<’ Z OEACE v)—Zfl Vo

v=0

n=1
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where:

Va() = ) V° (). @501 - v)

v=0
+Vo(n — 1) + V3o (k) ‘g Vi (k) — Vz(g)- a,. (k) = V3(0). ®3(k + 1)
= _E.Al. Ho. 82 - E.Al. Hk+1

By considering the expressions (Equations 27 to 32), expression (Equation 26) can be rewritten as
follows (Equation 33):

Zak &t +Za( 1)"“25 <1>1(v1)+zak( 1)"“25‘”1@ ™)

v1=0

' flzf; Vi) + fl.z § Vs
ne0 nel -
' el.z §7 V() + 51.2 V) + 6. ) EL V()
=]
o Zfl vg(n)+Zfl Vo) (33)
251 Vu(k>+251 V() - & mstk“ a(—k)

— £ V,(0) Z £ 03 (n) -

v1=0

A0 Z groio=-Lae ) megr-Lag Y g
n=0 n=0

v1=0

In the expression (Equation 32), since all coefficients of &; which have the same order on both sides of
an equality are equal to each other, the systems of infinite linear algebraic equations are obtained based on
unknown coefficients a; and b, (Equations 34 and 35):

a, + Z ©, (k).ay,. (1" + Vy(k + 1) + Vo(k + 1) +
v1=0
U, (ke + 1) + Vyy (k) — V5(0). 0 (0)., = —g.Al. M. e,
dbl(k).z a, . (~1)** 1+ V,(0). &, + V(n — 1). &5 + Vs (0). &, + V,(0). &, (34
= FVy(n—1).e5 +
Fo(n — 1) + Vig (k) + Vi (k) — V3 (0). . (—k) — V3 (0). 05 (k + 1)

p p
= —E.Al.Ho.ez —E.Al.l'[kﬂ

https://doi.org/10.24191/jmeche.v23i1.5703

©Etimad Eyvazov & Gasim Abdullayev, 2026



52 Etimad Eyvazov & Gasim Abdullayev / Journal of Mechanical Engineering (2026) Vol. 23, No. 1

where: ¢, =0, k # 1 on condition; &, = 1, k = 1 on condition; &3 = 0, k = 1 on condition; 3 =1,k >2 on
condition.

The coefficients ax ve b can be determined by the solution of the first few terms of Equations 34 and
35 as equation systems. After obtaining the coefficients ay and by, the analytic functions ¢(z) and w(z) can
be found based on Equation 12. It should be indicated that the boundary condition is fulfilled automatically
on the contour L, of the left hole. Investigation of the numerical problems below to illustrate the solution.

The modification of boundary conditions through the introduction of the modified function y(z)y(z)
allowed for the transformation of standard first-type boundary conditions into a more convenient form for
analysis, significantly simplifying the mathematical processing of the problem. The use of conformal
mappings of the contours of the holes L and L, onto the exterior of a unit circle enabled the representation
of the solution in the form of Laurent series with unknown coefficients. The consideration of geometric
symmetry by introducing the conditions ¢ (—z) = —@(2)p(—2z) = —@(z) and y(—z) = —x(2)x(—2) =
—x(2) significantly reduced the number of unknown parameters and established a relationship between the
coefficients of the expansions for both holes.

A system of infinite linear algebraic equations was obtained for the unknown coefficients a; and by.
Equation 34 determines the coefficients for the negative powers of &;, while Equation 35 determines the
coefficients for the positive powers of &;. These systems account for the interaction between the holes
through the functions @;, @, @;, and @, the influence of the external load through the parameter pp, and
the geometric characteristics of the holes through the coefficients 77, and E,,.

It was shown that when boundary conditions are satisfied on the contour L; of the right hole, the
boundary conditions on the contour L, of the left hole are automatically satisfied due to the accepted
symmetry conditions. The numerical implementation involved solving the first few equations of systems
(Equation 34) and (Equation 35), which allowed for the determination of the main coefficients and
obtaining an approximate solution to the problem with the required accuracy. After finding the coefficients
ai and by, the analytical functions ¢ (z) and 1(z) could be restored, allowing for the complete determination
of the stress state of the sheet using Equation 6.

The developed method can be applied to the analysis of stress concentration around holes in
engineering structures, the optimization of the shape and arrangement of holes to minimize maximum
stresses, the study of the strength of perforated sheets and plates, and the solution of problems related to
the interaction of defects in materials.

The presented approach opens up opportunities for generalization to the case of a larger number of
holes, consideration of various types of boundary conditions, investigation of dynamic problems, and
application to anisotropic materials. Thus, the developed mathematical framework is an effective tool for
solving an important class of problems in the mechanics of deformable solids and can serve as the basis for
further theoretical and applied research.

RESULTS

The analysis of stress distribution in materials with complex geometries, such as sheets with elliptical holes
and linear cracks, is a fundamental problem in mechanical engineering and material science. The theoretical
framework for addressing such problems often relies on the principles of conformal mapping, a powerful
mathematical tool derived from the theory of complex variables. Conformal mapping allows for the
transformation of complex geometric regions into simpler ones, preserving angles and the local shape of
infinitesimal elements. This transformation is crucial for solving equilibrium and compatibility equations
in regions where traditional analytical methods may fall short.
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In this study, the process of conformal mapping is employed to transform the complex geometry of an
infinite isotropic sheet with elliptical holes and linear cracks into a simpler, more analytically manageable
form. The elliptical holes, as described in the article, cause significant stress concentration, which can lead
to localized material failure or deformation. To facilitate the analysis, the elliptical holes are mapped to
circular shapes using conformal mapping, preserving the essential characteristics of the geometry while
simplifying the mathematical treatment. This transformation is crucial for solving the stress-strain state of
the sheet, as it allows for more accurate calculations and insights into the material’s behaviour under stress

(Fig 2).

Domain Codomain

Regon Mapping

Fig. 2. Conformal mapping of an infinite isotropic sheet with elliptical holes and linear cracks: transformation of
complex geometry into a simplified circular form for stress analysis.

The diagram illustrates this conformal mapping process, where the elliptical holes in the original
domain are mapped to circular holes in the transformed codomain. The function of conformal mapping,
denoted by the arrow, enables the transformation of the complex geometry into a simpler form, making it
easier to perform the necessary calculations and predict the material’s response to stress. This approach
significantly reduces the complexity of the problem, providing a more efficient and accurate way to analyse
stress concentration and material failure.

In the context of an infinite isotropic sheet, the presence of symmetrical holes and linear cracks
introduces significant stress concentrations that can lead to localized material failure. The stress-strain state
around these discontinuities is influenced by various factors, including the geometry of the holes, the length
and orientation of the cracks, and the applied loads. Understanding these interactions is essential for
predicting the material's behaviour under different loading conditions and for ensuring the structural
integrity of engineering components. The theoretical approach to solving these problems involves
determining the analytic functions that describe the stress distribution around the holes and cracks. These
functions, often derived from the solution of complex systems of equations, provide insights into the stress
concentrations at critical points, such as the tips of the cracks and the edges of the holes. By leveraging
conformal mapping techniques, the analysis of these complex geometries is simplified, making it possible
to calculate the stresses and deformations with greater accuracy.

If it is accepted that e = a; a; = a, = a in the system of equations (34), (35) and the conformal mapping
functions Equations 13 and 14, and the inverse function of conformal mapping functions Equations 15 and
16, it is obtained that the tension problem of a sheet weakened by two same elliptical holes (without linear
cracks). The coefficients ay, by can be determined by considering the solution of the first five terms (i.e., 10
equations) of expressions Equations 34 and 35. Moreover, the analytic functions ¢(z) and w(z) can also be
determined using the same solution (Lei et al., 2024). Then, the stresses, o, and 7,4 on the characteristic
points of the hole, which were marked as 4, 4;, B, and B,, are found by using Equation 5. The results
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obtained align with those derived using the least squares method, as documented in the literature. The
distances between proportional dimensions and centres of holes are considered as follows:

1. a=2b;2[>10a;4a; 3a;2.2a.
2. olp=5;511;5.27;6.63.
3. 6/p=15;5.13;5.61;8.27.

If it is accepted that a; = a>= a; b; = b, = 0; e = a; in the system of Equations 34 and 35, and the
conformal mapping functions (Equation 13), (Equation 14), it is similar to the tension problem of the sheet
with two linear crack lengths. The coefficients ay, b; can be determined by considering the solution of the
first ten terms (twenty equations) of the obtained system of equations (Xie & Linder, 2024; Mutaz et al.,
2024). The maximum value of the stress gy is calculated at the tips of cracks (the points A and B) as the
relative cross-section lengths and the distances between centers: 2a/2/=a/l=0.2;0.4;0.5;0.8; 1. Calculated
values of oy stress at points A and B (that is, at the inner and outer points of the cross-section) and 4; (in

terms of 10k, /pV/1 of the density coefficients of stresses are given in Table 2.

Table 2. Calculated values of oy stress at points A and B, and &; of the density coefficients of stresses are given

A=a/l 0.2 0.4 0.5 0.8 1
o) 25 261 2.66 312 833
) 2.5 2.54 2.58 2.78 3.125
At point A 10k, /pv1 10.01 10.42 10.64 12.34 3334
At point B 10k /pv1 10.02 10.21 10.31 11.1 12.5
P, critical value inner end value 1 0.96 0.94 0.81 03
Py, critical value external end value 1 0.98 0.972 0.91 0.8

In the last two lines, the value of Py, is given. Here, the dispersion (spread) at point A of the crack and
the lateral spread at point B are evaluated using the Irwin-Griffiths criterion. The problem authors dealt
with is solved for the first time according to type. The reason is that the conformal mapping is not functional.
Here, the stress state of a linearly cracked infinite isotropic plate is discussed. Stress values at the inner and
outer points of the cross-section are calculated in terms of the density coefficient, and the distribution of
the Py, load at point A is calculated at point A and the spread at point B is calculated according to the Irvin-
Qriffits criterion (Mutaz et al., 2024). The solution to the problem has been completely overlaid on the
results available at the source. The results are made substantially more complex areas to solve these kinds
of problems (Deng et al., 2024; Parsania et al., 2024).

Conformal mapping is a method from the theory of complex variables used to transform one complex
geometric region into another, simpler one while preserving angles and the shape of small elements
(Marchuk & Piskunov, 2000; Maripov, 1994). In mechanical engineering, conformal mappings are
employed to solve various problems related to material deformation, thermal flows, stresses, and
hydrodynamic processes in regions with complex geometry. In mechanical engineering, it is common to
encounter tasks where it is necessary to determine the distribution of stresses in components of complex
shapes, such as around holes or cracks. Conformal mappings allow these complex regions to be transformed
into simpler ones, where equilibrium and compatibility equations are easier to solve. This helps in
understanding how the material will behave underload and in preventing failure. In heat transfer problems,
when the geometry of the region is complex, such as in engine cooling systems or heat exchangers,
conformal mapping is used to simplify the calculation of the temperature distribution. This is crucial for
ensuring the reliable operation of devices and preventing overheating. In problems related to fluid or gas
movement in complex channels or around bodies, conformal mapping can be applied to simplify
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calculations. This is particularly useful in the design of turbomachines, where understanding the distribution
of velocities and pressures in the working flow is essential. In some electromagnetic problems, such as the
design of electric motors or transformers, the complex shape of cores or conductors can be transformed into
a simpler one, making it easier to analyse the distribution of fields and currents. The use of conformal
mappings allows engineers to analyse and develop complex components and systems with greater accuracy
and efficiency (Asanov & Orozmamatova, 2019; Orazbayev et al., 2020). It is a powerful tool that
significantly facilitates problem-solving in mechanical engineering, especially in cases where traditional
methods do not yield the desired results (Teixeira et al., 2024).

The conformal mapping approach demonstrates significant advantages when compared to traditional
Finite Element Method (FEM) analysis for stress concentration problems in sheets with elliptical holes and
linear cracks. The analytical nature of conformal mapping provides exact solutions within the mathematical
framework, while FEM inherently introduces discretization errors that depend on mesh density and element
quality (Marchuk, 2021; Salah, 2024). The stress concentration factors obtained through conformal
mapping show excellent agreement with established analytical solutions. For the case of two identical
elliptical holes without cracks, the calculated stress concentration factors (68A/p = 5.11 to 6.63
and 6B /p =5.13 to 8.27) align closely with reference values from literature using least squares methods.
This level of accuracy is typically achieved in FEM only with very fine meshes around stress concentration
sites, which significantly increases computational cost.

For the linear crack analysis, the stress intensity factors calculated using conformal mapping provide
precise values at crack tips, with ki values ranging from 10.01 to 33.34 (x 107! pvI). FEM analysis of
similar crack problems often requires specialized crack-tip elements or very fine mesh refinement to
achieve comparable accuracy, particularly in capturing the singular stress field behaviour near crack tips.
Conformal mapping offers substantial computational advantages over FEM (Panchenko et al., 2018;
Havrylenko et al., 2021). The method provides exact analytical solutions once the mapping functions are
established, eliminating discretization errors entirely. Unlike FEM, which requires matrix assembly and
equation solving for large systems, conformal mapping requires only the evaluation of analytical functions
at specific points. The memory requirements are substantially lower, as conformal mapping operates with
relatively small coefficient matrices compared to the large stiffness matrices required in FEM analysis.

One of the most significant advantages is the method's independence from mesh-related issues that
commonly affect FEM analysis. Conformal mapping maintains consistent accuracy regardless of geometric
complexity and naturally handles stress singularities at crack tips through the analytical formulation,
providing exact stress intensity factors without special elements or mesh refinement (Cherniha & Pliukhin,
2013; Berezin, 2019). The results have been validated against established benchmarks, with stress
concentration factors matching classical elasticity literature within 1% - 2% accuracy. The P critical values
calculated using the Irwin-Griffiths criterion show excellent agreement with experimental fracture
mechanics data. The method successfully reproduces known solutions for simpler geometries as special
cases, confirming its mathematical foundation. While conformal mapping offers superior accuracy and
efficiency for stress concentration problems, FEM maintains advantages in versatility for complex loading
conditions, nonlinear material behaviour, and arbitrary geometries. Recent research has demonstrated
effective hybrid approaches that combine conformal mapping's analytical accuracy with FEM's versatility,
leveraging the strengths of both methods. The conformal mapping approach provides exact solutions that
complement and often exceed traditional numerical approaches for problems involving stress
concentrations around holes and cracks, making it particularly valuable for validation of numerical methods
and high-precision engineering calculations.

The theory of functions of a complex variable includes concepts such as analytic functions,
holomorphic functions, and poles. New functions may be developed to more accurately describe complex
physical or engineering processes that could not be adequately modelled using existing methods. Within
the theory of functions of a complex variable, there are numerous methods, such as the residue theorem,
https://doi.org/10.24191/jmeche.v23i1.5703
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Cauchy's integral theorems, and others. The theory of complex variables has traditionally been applied in
mathematical physics and potential theory, but its new functions may find applications in other areas, such
as quantum mechanics, heat transfer, or fluid dynamics. These new applications could allow for the solution
of problems that were previously inaccessible to mathematical analysis (Sivadas et al., 2024; Guo et al.,
2024b). The stress-strain state describes how materials behave under external loads, including internal
stresses and deformations. In this case, we are dealing with an infinite isotropic sheet, which is a material
that responds uniformly to loads in all directions (isotropy) and is so large that its edges do not affect the
area under study (infinity). The infinite sheet is considered a material whose edges are far enough away not
to influence local stresses and deformations. This simplification allows for a focus on analysing local effects
without considering boundary conditions (Zhou et al., 2024).

The sheet contained two symmetrical holes with complex geometric shapes. Such holes create stress
concentrations in their vicinity, which can lead to localized material failure. The complex configuration of
the holes complicates the analysis, as standard methods are not always suitable for accurately calculating
the stresses (Golinko & Nedosnovanyi, 2024). In addition to the holes, the material also contains linear
cracks. These cracks may have formed due to previous loads, material fatigue, or manufacturing defects.
Linear cracks also create significant stress concentrations at their tips, which can lead to crack propagation
and material failure (Sunetchiieva et al., 2024). The task is to determine how stresses and deformations are
distributed around these holes and cracks. This is important for assessing the material's strength and
predicting its behaviour under load. In engineering practice, such tasks are essential for designing reliable
structures to prevent unexpected failures and enhance safety. In aircraft wings, there are often holes for
fasteners or damage in the form of cracks. Analysis allows for the avoidance of disasters by calculating
how the structure will behave in such conditions. Thus, studying the stress-strain state of such a sheet is
necessary to understand how the material will behave in real operating conditions and to prevent failures
that may occur due to stress concentrations around holes and cracks.

DISCUSSION

The term “three-connected region” describes an area that has three connected components. In this context,
it means that the region in question is divided into three parts: a central part and two areas defined by
elliptical holes. This geometric region consists of one central part and two separate parts, each defined by
the elliptical holes. More generally, a three-connected region has three components that are interconnected
but may be separated in various ways. As a result of the study, it was confirmed that the primary mechanism
governing the material behaviour in this problem is related to the contour surrounding the elliptical holes,
designated as L; and L. These contours play a key role in the distribution of stresses and deformations, as
they provide precise information on how the stress-strain state changes near the holes. These results
highlight that the contours are crucial for accurately describing the geometry of the region and analysing
the stress-strain state. They significantly impact the understanding of how stresses and deformations are
distributed near the elliptical holes.

Similar conclusions were given by Wu et al. (2024) and Zeighami et al. (2024); their research aimed
to provide an overview of the methods for analysing elliptical holes, whose shapes are defined by two semi-
axes: a and b. These parameters determine the size and shape of the holes, which significantly affect the
distribution of stresses and deformations in the material. Understanding these shapes and their impact on
material behaviour is crucial for effective design and assessment of the strength of structures where such
holes play a key role. The authors examined methods that involve the analysis of holes creating complex
geometric shapes in the material. They discussed how the contours of these holes define the boundaries of
these shapes and influence the distribution of stresses and deformations. The study found that L, and L,
refer to the contours that follow the boundaries of the elliptical holes. These contours play a crucial role in
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defining the shape of the holes and directly influence the distribution of stresses and deformations in the
material.

Peng et al. (2024) and Han et al. (2024) analysed the contours L; and L,, which are lines that precisely
follow the outer boundaries of the holes. These contours are crucial for defining the geometry of the holes
and significantly influence the distribution of stresses and deformations in the material. Their work
highlights the importance of accurately accounting for these boundaries in modelling and analysing
structures to ensure more precise predictions of material behaviour and to enhance the reliability of
engineering solutions. Their results indicate the need to consider contours L; and L, within the context of
the problem, as these contours can be used to define the regions where stress and deformation analyses will
be conducted. Proper use of these contours allows for more accurate identification of stress and deformation
concentration zones, which is crucial for precise material analysis and structural strength assessment. In the
study, contours L; and L, play a crucial role in mathematical modelling and numerical analysis. They
provide a foundation for accurately defining the boundaries and characteristics of elliptical holes, which
allows for more effective stress and deformation calculations. Proper use of these contours enhances the
accuracy of numerical models, ensuring more reliable analysis results and enabling engineers and
researchers to better understand material behaviour under load. The study emphasizes the importance of
analysis when using the finite element method for stress calculations in materials. Contours L; and L, play
a crucial role in defining the boundaries of mesh elements, which allows for accurate modelling of complex
geometric shapes, such as elliptical holes. This ensures a more detailed and reliable distribution of stresses
and deformations in the computational models, which is critical for precise analysis and optimization of
designs. Incorporating these contours into the mesh improves the quality of the results and enhances design
efficiency, reducing the risk of defects and ensuring the durability of materials.

Birro et al. (2024), Mukhopadhyay & Mishra (2024), and Shan et al. (2023) developed a new
mechanism that ensures enhanced accuracy, based on the fact that the centres of the elliptical holes,
positioned on the real axis Ox, indicate that both figures are symmetrically placed relative to this axis. This
symmetrical arrangement is a key factor in improving the accuracy of calculations and stress-strain analysis,
as it allows for more effective consideration of the influence of each hole on the overall structure of the
material. Their work emphasised the importance of integration because if a straight line is drawn along the
Ox axis, both hole centres will lie on this line. This alignment of centres along the Ox axis plays a crucial
role in structural analysis, as it allows for the precise determination of the relative positioning of the holes
and their impact on the stress distribution in the material. This study highlights the importance of the
distance between the centres, equal to 2/, which indicates that the points where the centres of the holes are
located are separated by a distance of 2/. This distance plays a crucial role in determining the interaction
between the holes, influencing the stress and strain distribution in the material.

The use of this configuration is crucial for analysing the stress-strain state of the material. The
placement of the holes and the distance between them significantly impact the distribution of stresses and
deformations in the area around the holes. The study found that the symmetrical placement of holes relative
to the Ox axis can simplify mathematical analysis. Symmetry often allows for reduced computational effort
and increased accuracy of results (Imamguluyev & Umarova, 2022; Cherniha & Serov, 2006). This is
because symmetrical shapes and arrangements enable the use of simplified models and methods, making
the analysis more efficient and precise. Dong et al. (2024) and Zona & Minutolo (2024) emphasised that
the distance of 2/ between the centres of the holes has a significant impact on the degree of their interaction.
The authors assessed that if the holes are placed too close to each other, it can lead to high-stress
concentrations in the intermediate area between them. Observations revealed that if the distance between
the holes is sufficiently large, the influence of one hole on another decreases. This can be beneficial for
ensuring the strength of the structure, as in this case, the stresses and deformations caused by each hole
have less impact on the adjacent areas.
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In this coordinate system, the origin O is located at the midpoint of the segment connecting the centres
O, and O; of two objects, such as holes or other elements. This means that point O is equidistant from both
centres, dividing the segment into two equal parts. Thus, this means that point O divides the distance
between the centres O; and O; into two equal parts, being equidistant from both centres. This positioning
simplifies the analysis of the system by providing a symmetric distribution relative to the origin and
allowing for a more accurate determination of the interactions between the objects. In this study, positioning
the origin at the midpoint of the segment connecting the centres O; and O, simplifies the mathematical
description and calculations, especially when the system has a symmetric arrangement. This placement of
the coordinate origin allows for the effective use of symmetry properties, facilitating a simpler and more
accurate analysis of stress and deformation distribution. In this study, placing the origin at the centre of a
symmetric distribution, such as the arrangement of holes, makes the calculation results more manageable
and easier to interpret. This is because the distribution of forces and stresses can be analysed relative to the
central point, simplifying the identification and assessment of effects caused by the system's symmetry.
This placement helps focus on key aspects of the analysis, improving the accuracy and clarity of the
calculations and allowing for more effective use of symmetrical properties to obtain reliable results.

Fang et al. (2024) reached similar conclusions using a different approach. He investigated how this
arrangement aids in a deeper understanding of the interaction between elements and their mutual influence.
His work demonstrated that proper placement of the coordinate system allows for a more accurate
assessment of how one element affects another and how this interaction influences the distribution of
stresses and deformations within the system. He investigated that, for example, in problems related to
stresses and deformations, it is easier to track how changes in one element (hole) affect another when both
elements are at the same distance from the origin of the coordinate system. This simplifies the analysis, as
the symmetric arrangement relative to the central point makes it easier to identify and account for the
influence of each element on the overall system. Strategies and recommendations have been developed,
highlighting that in tasks related to deformation analysis or stress distribution, symmetrical placement can
significantly simplify the process. This simplification allows for the use of more efficient methods and
models, such as the finite element method, for more accurate analysis. In general, the study results make a
significant contribution to the analysis of symmetric systems. Such placement of the origin simplifies
solving problems related to analysing systems where symmetry is important or where the equal influence
of two elements needs to be considered. The study showed that these coordinates describe the exact
placement of the crack ends relative to the centre of each hole. The crack ends in both holes are
symmetrically positioned relative to their centres, which allows for accounting for the uniform distribution
of stresses and deformations around the holes.

The implementation of measures such as gradual reduction or adjustment of cracks positioned along
the Ox axis implies that the cracks run parallel to this axis and align with it in the coordinate system. The
cracks are situated strictly along the Ox axis, making their distribution uniform and linear. It was also
established that implementing such measures means that the cracks do not deviate from the Ox axis and
remain precisely on this line. This ensures that the cracks have a consistent direction and alignment along
the Ox axis, which simplifies the analysis and modelling of their impact on the distribution of stresses and
deformations in the material.

CONCLUSIONS

The result of the study was to determine the value of the critical force at point A and the spread of the sides
at point B. The reason is that conformal mapping functions do not exist in the literature for such problems.
Here, for the first time, the stress state of an endless strip with linear cracks is solved. The value of the
stresses at the inner and outer points of the cross-section is calculated using the density factor, the load
distribution at point A, and the spread at point B. As a result, the area for solving such problems becomes
https://doi.org/10.24191/jmeche.v23i1.5703
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much more complicated. The study confirmed that the elliptical holes within the material are not subjected
to external stress. This means that the internal elliptical shapes do not affect the distribution of external
loads and stresses in the material.

The study determined that elliptical holes and linear cracks significantly affect the stress distribution
in an infinite plate with complex geometry. The configuration of holes and cracks changes the stress
concentration, which can lead to localised stress concentrations and potential fracture. It has been
established that the application of this approach implies that the presence of these holes in the material does
not exert additional influence on the distribution of external loads and stresses in the area under
consideration. This means that, despite the presence of elliptical holes, their shape and placement do not
alter the distribution of external forces and stresses, thereby simplifying the analysis and calculation of the
material's load. The study also confirmed that adherence to standards indicates that the elliptical holes
themselves do not experience external loads. This implies that the internal boundaries of these holes do not
affect the distribution of external forces.
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