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 In engineering design, structural defects such as cracks can lead to 

catastrophic failures in machines and equipment. This study investigates 

the uniaxial stress state of an infinite sheet weakened by two elliptical 

holes with linear cracks. Due to the complexity of the geometric 

configuration and the absence of known conformal mapping functions 

for such regions, this problem has not been addressed in previous 

research. We solve a plane elasticity problem for a complex geometric 

configuration featuring two elliptical holes with linear cuts using the 

theory of complex variables and conformal mapping functions. The 

solution involves solving a system of linear algebraic equations derived 

from the theory of complex variables and Kolosov-Muskhelishvili 

potentials. By expanding the functions φ(z) and ψ(z) into series, we 

obtain an analytical solution and provide numerical examples to 

illustrate key theoretical aspects. The coefficients of the analytical 

functions are determined, and well-known elasticity theory formulas are 

applied to compute stress components at characteristic points. This 

research presents a novel approach to solving this specific problem, as 

conformal mapping functions for such complex configurations have not 

been previously established. 
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INTRODUCTION 

Conformal mapping has numerous applications in solving practical problems in the field of mechanical 
engineering with the use of new functions of the theory of complex variables for different areas having a 

complex geometric configuration. In this article, the problem is solved for the first time using new functions 

of the theory of functions of a complex variable. The article deals with the stress-strain state of an infinite 
isotropic sheet, weakened by two symmetrical holes of complex configuration and with linear cracks. The 

presented product has a three-connected area, bounded from the inside by two elliptical holes with semi-
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axes a and b. The outlines surrounding these ellipses are designated L1 and L2, respectively. Outside, the 

square or endless strip is bounded by two parallel lines. The centres of the elliptical holes are located on 
the real axis Ox, and the distance between these centres is 2l. The origin of the O coordinate system is in 

the middle of the centres O1 and O2. Coordinates of the ends of linear cracks: (l_1±e) for the hole on the 

right and (l_1±e) for the hole on the left. Straight cutouts (cracks) lie on the Ox axis. The holes, i.e., ellipses 
from the inside, are not subject to external stress. A tensile force with intensity p is applied to the infinite 

sheet along the ordinate. In the study of the uniaxial stress state of an infinite sheet with complex geometry, 

weakened by elliptical holes and linear cracks, it is important to focus on the presence of these elliptical 
holes and linear cracks in the sheet’s geometry, which leads to significant stress concentration in these 

areas. This can result in undesirable local increases in stress, potentially causing material failure or 

deformation. 

The problem studied in this area covers the analysis of an infinite strip with a complex geometric shape, 

which looks like an ellipse. Mukhopadhyay & Mishra (2024) determined that an ellipse has two semi-axes: 

major and minor. The researcher also determined how these semi-axes affect the behaviour and 
characteristics of the elliptic region. As part of the study, Guo et al. (2024a) determined that two symmetric 

cracks located on the real axes of the ellipse are also accounted for. These cracks have a significant impact 

on the behaviour and characteristics of the area under investigation, which requires special attention during 
the analysis. Issues that require further study include the development of conformal mapping. Such a 

mapping is important for simplifying complex geometric shapes and analysing their properties. Another 

important task is to analyse the conformal mapping function. These functions simplify the problem by 
converting the complex configuration of a cracked ellipse into a simpler form, which facilitates further 

analysis and calculations. 

Li et al. (2024) and Wang et al. (2024) analysed and developed strategies to preserve the geometric 
characteristics of the area. They determined the shape of this area, which in this case is an ellipse with 

cracks, which is key to accurate research and analysis. Wu et al. (2024) analysed and established the 

correlation between the number of selected conformal mappings. The author identified how these mappings 
could simplify the area, transforming it into a more analytically friendly form. Issues that require further 

study include assessing the impact of transforming a problem into a simplified form. After converting the 

area to a more convenient form for analysis, it is necessary to determine how this will affect the application 
of standard methods to solve the problem. Further research is needed to verify the stability of the results. 

After the results obtained for the simplified domain are transferred back to the original form, it is necessary 

to check their accuracy and stability to ensure the final solution. Another topical issue in this area is that 
the second problem uses analytical regular functions from the theory of complex functions to solve a 

specific problem. This can be used for specialised mathematical methods that simplify and accurately solve 

the problem, which can be substantial for analysing complex systems or geometric configurations. 

Cao et al. (2024) presented a methodology for determining optimal application rates using the theory 

of complex variable functions. This theory studies functions that are analytical (or regular) on the complex 

plane, which was used to develop accurate and efficient methods for solving problems. Zhao et al. (2024) 
and Lawlor et al. (2024) analysed analytical functions, which are functions that have a derivative at every 

point in their domain of definition and are continuous. They showed that the use of such functions can 

simplify the solution of problems involving complex geometric areas or conditions that are difficult to solve 
directly. The effectiveness of different formulas for solving the problem needs to be further studied. For 

this purpose, certain analytical functions are selected that best meet the conditions of the problem and help 

to optimally solve the problem. 

Research into the development of hardening technologies may involve the selection of functions with 

specific properties, such as unit functions, simple polynomials, fractional rational functions, or other 

specialised functions. This can be used to adapt the methods to the specific conditions and requirements of 
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the task to achieve the best results. The authors' goal is to study the stress-strain state of an endless strip 

with two elliptical holes and two symmetric cracks. 

 

MATERIALS AND METHODS 

This paper presents the essential equations for calculating the stresses at critical locations within the cross-

sections of the plate. The system of linear algebraic equations was solved by representing the functions φ(z) 
and ψ(z) as series expansions. During the study, an analytical solution was obtained, and numerical 

examples were given to illustrate important aspects of the theory. By solving these linear algebraic 

equations, the coefficients of the analytical function were found, and the well-known formulas of the theory 
of elasticity were used to determine the stress components, and the stress components were also found at 

the characteristic points of the sections. 

A qualitative analysis of stresses and deformations was conducted, and classifications were created, 
which allowed the identification and systematisation of the main factors affecting the stability of structures 

with complex geometry, particularly the presence of elliptical holes and linear cracks, leading to stress 

concentration and potential material failure. This enabled the development of targeted methods for effective 
protection and restoration of structures in the design of engineering tasks, where constructors often 

encounter various defects in structures, particularly cracks. The primary focus was on investigating and 

classifying the threats associated with the use of various strengthening technologies and methods within 
the study. The study included a comparative analysis and critical review of various technologies applied to 

solve a plane problem in elasticity theory with a complex geometric configuration, weakened by two 

elliptical holes with linear cuts. The effectiveness was evaluated by solving the problem, which was 
addressed through a system of linear algebraic equations using the theory of complex variables and 

Kolosov-Muskhelishvili potentials (Table 1). 

Table 1. Symbol definitions 

Category Symbol Description 

Geometric Parameters z Complex coordinate in the physical plane 

Geometric Parameters ξ₁, ξ₂ Complex coordinates in the mapped plane (unit circles) 

Geometric Parameters L₁, L₂ Contours of the right and left elliptical holes, respectively 

Geometric Parameters l Half-distance between hole centres 

Geometric Parameters a₁, b₁ Semi-major and semi-minor axes of the elliptical holes 

Geometric Parameters A₁, A₂ Mapping parameters, where 𝐴₁ =  𝐴₂ =  (𝑎₁ +  𝑏₁)/2 

Complex Functions φ(z) Primary complex potential function 

Complex Functions ψ(z) Secondary complex potential function 

Complex Functions χ(z) Modified potential function, defined as 𝜒(𝑧)  =  𝜓(𝑧)  +  𝑧 · 𝜑′(𝑧) 

Complex Functions f(t,t̄) Boundary condition function on contours L₁ and L₂ 

Stress Components σₓ, σᵧ Normal stress components in x and y directions 

Stress Components τₓᵧ Shear stress component 

Stress Components σₓ⁰, σᵧ⁰, τₓᵧ⁰ Applied stress components at infinity 

Stress Components p, q Applied forces in different directions 

Series Coefficients aₖ, bₖ Unknown coefficients in the series expansions 

Series Coefficients Πₙ, Eₙ, Lₙ Coefficients in the conformal mapping functions 
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The key parameters of the study were determined, including the geometric characteristics of the plate, 

the size of the elliptical holes, and the location and length of the linear cracks. The load conditions and 
boundary conditions for the plate were also established, which were used to accurately formulate the 

problem and ensure the correctness of further analysis. The conditions established account for both static 

and dynamic loads, which can be used to assess the real impact of defects on structural stabi lity under 
conditions close to operational ones. The structural stability was assessed, and the stability of the structure 

was analysed, addressing the stress distribution obtained at the previous stage. The analysis identified 

potential areas of cracking or defects and assessed the risks of further expansion. The structure was tested 
for strength and stability to determine whether it meets the established safety requirements. Additionally, 

an analysis was carried out to assess the impact of parameter variations on the overall stability of the 

structure, which allows for a more complete picture of its changes under different loading conditions. 

The first task was to consider an infinite strip with a complex configuration in the form of an ellipse 

with large and small semi-axes, as well as two symmetric cracks located on the real axes. For this purpose, 

the conformal mapping functions were found. The second task was to solve the problem using analytical 
regular functions of the theory of complex variables. Next, these contours were transformed into unit 

circles. After complex mathematical calculations, the problem was reduced to a system of two linear 

algebraic equations. The first few terms (coefficients) of these equations are then stored. To determine the 
normal and tangential stresses, we used special formulas from the plane problem of elasticity theory and 

calculated the stress components at certain points (Fig 1). 

 

Fig. 1. Stress-strain state of infinite isotropic sheet weakened by two elliptical holes with linear cracks. 

The problem begins with establishing the boundary conditions that must be satisfied on the hole 

contours. As is known, the solution to such problems is accomplished by finding complex potentials φ(z) 

and x(z) as boundary conditions, expressed in Equation 1: 

 𝜑(𝑡) + (𝑡 − 𝑡) ⋅ 𝜑′(𝑡) + 𝜒(𝑡) = 𝑓(𝑡, 𝑡) (1) 
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These boundary conditions differ slightly from the first boundary conditions shown in Equation 2: 

 𝜑(𝑡) + 𝑡. 𝜑′(𝑡) + 𝜓(𝑡) = 𝑓(𝑡, 𝑡) (2) 

 

This differs from the standard first boundary condition by introducing the modified function χ(𝑧). To 

simplify the mathematical treatment, the modified potential function is introduced in Equation 3: 

 𝜒(𝑧) = 𝜓(𝑧) + 𝑧𝜑′ (𝑧) (3) 

 

This substitution transforms the boundary condition into a more convenient form for analysis. By 
applying the conjugate expression of χ(z) and substituting it into Equation 2, the boundary conditions can 

be transformed into the form of Equation 1. In Equation 1, t represents the affix of points of the contours 

L1 and L2. It should be indicated that the function 𝑓(𝑡, 𝑡) is defined as follows in Equation 4: 

 
𝑓(𝑡, 𝑡) = −𝑝

1

2
(𝑡 + 𝑡) ± 𝐶 (4) 

 
If the forces p and q are applied to the sheet in both directions, then the expression can be written for 

𝑓(𝑡, 𝑡) as follows Equation 5: 

 
𝑓(𝑡, 𝑡) =

𝑞 − 𝑝

2
. 𝑡 −

𝑞 + 𝑝

2
. 𝑡 ± 𝐶 (5) 

 

In this case, 𝜎𝑥
0, 𝜎𝑦

0

 

and 𝜏𝑥𝑦
0 values are as below for solid sheets: 𝜎𝑥

0 = 𝑞; 𝜎𝑦
0 = 𝑝;  𝜏𝑥𝑦

0 = 0. And the 

constant C is negligible since it does not affect the stress state of the sheet. The stress state of the sheet 

during observation is determined by using Equation 6: 

 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑥
0 + 𝜎𝑦

0 + 4 𝑅𝑒[𝜑′(𝑧)] , 𝜎𝑥 − 𝜎𝑦 + 2𝑖𝜏𝑥𝑦

= 𝜎𝑦
0 − 𝜎𝑥

0 + 2𝑖𝜏𝑥𝑦
0 + 2[(𝑧 − 𝑧)𝜑′′(𝑧) − 𝜑′(𝑧) + 𝜒′(𝑧)] 

(6) 

 

where, the stress compony 𝜎𝑥
0, 𝜎𝑦

0 and 𝜏𝑥𝑦
0  𝜏𝑥𝑦

0 , 𝜎𝑥
0, 𝜎𝑦

0 and 𝜏𝑥𝑦
0  belong to a solid sheet. And the stress 

components are as below for the problem in this case, Equation 7: 

 𝜎𝑥
0 = 0, 𝜎𝑦

0 = 0, 𝜏𝑥𝑦
0 = 0 (7) 

 

The function φ(z) and χ(z) can be determined as follow Equation 8: 

 𝜑1(𝑧) = 𝜑1(𝑧) + 𝜑2(𝑧); 𝜒(𝑧) = 𝜒1(𝑧) + 𝜒2(𝑧) (8) 
 

where, the functions φ1(z) and χ1(z) are holomorphic functions out of hole L1 and the functions φ2(z) and 

χ2(z) are holomorphic functions out of hole L2. The functions can be written as follows, since those functions 

are missing at infinite, Equation 9: 

 
𝜑1(𝑧) = ∑ 𝑎𝑘

∞

𝑘=1

. 𝜉1
−𝑘, 𝜑2(𝑧) = ∑ 𝑎𝑘

∗

∞

𝑘=1

𝜉2
−𝑘 

 

(9) 
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𝜒1(𝑧) = ∑ 𝑏𝑘

∞

𝑘=1

. 𝜉1
−𝑘, 𝜒2(𝑧) = ∑ 𝑏𝑘

∗

∞

𝑘=1

𝜉2
−𝑘. 

 
The stresses on the sheet, which occurred due to geometrical and force symmetry are even functions of 

the variable z. σx, σy coincide at symmetry points of the real axis (e.g. -(l-R) < z < (l-R) points). From 

Equation 5, φ(z) and χ(z) are not even functions based on the variable z. Then, it can be written as the 

following expression Equation 10: 

 𝜑(−𝑧) = −𝜑(𝑧);  𝜒(−𝑧) = −𝜒(𝑧) (10) 

 

If Equations 8 and 9 are substituted in these conditions and the coefficients of the same variables ξ1 

and ξ2 are equalized, can get the following expression (Equation 11): 

 𝑏𝑘
∗ = (−1)𝑘+1𝑏𝑘 (11) 

 
In this case, the functions φ(z) and χ(z) are as follows (Equation 12): 

 
𝜑(𝑧) = ∑ 𝑎𝑘[𝜉1

−𝑘 + (−1)𝑘+1𝜉2
−𝑘]

∞

𝑘=1

 

 

𝜒(𝑧) = ∑ 𝑏𝑘[𝜉1
−𝑘 + (−1)𝑘+1𝜉2

−𝑘]

∞

𝑘=1

 

(12) 

 

Out of contours, L1 and L2 are mapped to the exterior of a unit circle by using the following formulas 

(Equations 13 and 14): 

 
𝑧 − 𝑙 = 𝐴1. 𝜉1 ∑ 𝛱𝑛𝜉1

−𝑛

∞

𝑛=0

 (13) 

   
 

𝑧 + 𝑙 = 𝐴2𝜉2 ∑ 𝛱𝑛

∞

𝑛=0

𝜉2
−𝑛 (14) 

 

where, A1 = A2 = (a1+b1)/2 a1 and b1 a1 and b1 are semi-axes of ellipses with L1 and L2 contour. The 

function 𝜉1 = 𝜒(𝑧) which is inverse to conformal mapping functions in Equations 13 and 14, can be 

determined as follows (Equations 15 and 16): 

 
𝜉2 =

𝑧 + 𝑙

𝐴2

. ∑ 𝐸𝑘

∞

𝑘=0

(
𝐴2

𝑧 + 𝑙
)

𝑘

 (15) 

   

 
𝜉2 =

𝑧 + 𝑙

𝐴2

. ∑ 𝐸𝑘

∞

𝑘=0

(
𝐴2

𝑧 + 𝑙
)

𝑘

 (16) 

 

𝛱𝑛 , 𝐸𝑛 (Equations 13 to 16) are included, and the remaining values can be determined using methods 

described in the literature [9]. Substituting expressions (Equations 12 to 14) in the boundary condition 

(Equation 17): 
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∑ 𝑎𝑘

∞

𝑘=1

[𝜉1
−𝑘 + (−1)𝑘+1] + (𝑡 − 𝑡)

= ∑ 𝑎𝑘 [(−𝑘) (𝜒1
−𝑘−1) + (−1)𝑘+1(−𝑘) (𝜉2

−𝑘−1)]

∞

𝑘=1

+ 

+ ∑ 𝑏𝑘 [(𝜉1
−𝑘) + (−1)𝑘+1 (𝜉2

−𝑘)]

∞

𝑘=1

= 𝑓(𝑡, 𝑡) 𝐿𝑗(𝑗 = 1,2) 

(17) 

 
This equation seems to represent a boundary condition on the contour L1 of a hole in a complex plane. 

The terms involve infinite series expansions of coefficients ak and bk, which are likely related to the Laurent 

series expansions of the complex potentials 𝜑(𝑧) and 𝜓(𝑧). The relationship between ξ1 and ξ2 can be 

written based on formulas in Equations 15 and 16 in the contour of right hole ξ1 = τ1 and (Equation 18): 

 
𝑧 − 𝑙 = 𝑡∗ = 𝐴1𝜏1 ∑ 𝛱𝑛

∞

𝑛=0

𝜏1
−𝑛 (18) 

 

This equation appears to describe a conformal mapping that transforms the complex plane. Here, z is a 

point in the physical plane, τ is a point in the transformed plane, and A and Πn are coefficients related to the 

mapping function (Equation 19).  

 
𝑧 − 𝑙 = 𝑡∗ = 𝐴1𝜏1 ∑ 𝛱𝑛

∞

𝑛=0

𝜏1
−𝑛 

𝜉2
−𝑘 = [(

𝑧 + 𝑙

𝐴2

) . ∑ 𝐸𝑛 (
𝐴2

𝑧 + 𝑙
)

𝑛∞

𝑛=0

]

−𝑘

= (
𝐴2

𝑧 + 𝑙
) . [∑ 𝐸𝑛

∞

𝑛=0

(
𝐴2

𝑧 + 𝑙
)

𝑛

]

−𝑘

=

= (
𝐴2

𝑧 + 𝑙
) .

1

[∑ 𝐸𝑛
(𝑘)∞

𝑛=0 (
𝐴2

𝑧 + 𝑙
)

𝑛

]
= (

𝐴2

𝑧 + 𝑙
)

𝑘

. [∑ 𝐿𝑛

∞

𝑛=0

(
𝐴2

𝑧 + 𝑙
)

𝑛

] =

= [∑ 𝐿𝑛

∞

𝑛=0

(
𝐴2

𝑧 + 𝑙
)

𝑛+𝑘

] = [∑ 𝐿𝑛−𝑘

∞

𝜈=𝑘

(
𝐴2

𝑧 + 𝑙
)

𝜈

] 

(19) 

 

where (Equation 20): 

 
𝐿𝑛 + ∑ 𝐿𝑛−𝑛1

𝑛

𝑛1=1

. 𝐸𝑛1

(𝑘)
= 0 

 

𝐸𝑛
(𝑘)

= ∑ 𝐸𝑛1

(1)

𝑛

𝑛1=1

. 𝐸𝑛−𝑛1

(𝑘−1)
 

 

𝑛 = 0, 1, 2, … , 𝑘; 𝑘 = 2, 3, … 

(20) 

 

Equation 20 provides a condition that the coefficients Ln and 𝐸𝑛 
(𝑘)

must satisfy. This condition ensures 

that the boundary conditions or other constraints in the transformed plane are met. Then, based on 2l > z-l 

in expression Equation 18, if the arrangement is done, it can be found as follows Equation 21: 
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𝜉2
−𝑘 = ∑ 𝐿𝜈−𝑘. (

𝐴2

𝑧 + 𝑙
)

∞

𝜈=𝑘

𝜈

= ∑ 𝐿𝜈−𝑘. (
𝐴2

𝑧 − 𝑙 + 2𝑙
)

∞

𝜈=𝑘

𝜈

= ∑ 𝐿𝜈−𝑘. (
𝐴2

2𝑙
)

∞

𝜈=𝑘

𝜈

.
1

(1 +
𝑧 − 𝑙

2𝑙
)

𝜈 = 

= ∑ 𝐿𝜈−𝑘. (
𝐴2

2𝑙
)

∞

𝜈=𝑘

. ∑ 𝐶−𝜈
𝑘1

∞

𝑘1

. (
𝑧 − 𝑙

2𝑙
)

𝑘1

= ∑ 𝐿𝜈−𝑘

∞

𝜈=𝑘

(
𝐴2

2𝑙
)

𝜈

∑ 𝐶−𝜈
𝑘1

∞

𝑘1=0

[
𝐴1𝜉1. ∑ П𝑛. 𝜉1

−𝑛∞
𝑛=0

2𝑙
]

𝑘1

= 

= ∑ 𝐿𝜈−𝑘 (
𝐴2

2𝑙
)∞

𝜈=𝑘

𝜈

. ∑ 𝐶−𝜈
𝑘1∞

𝑘1=0 (
𝐴1

2𝑙
)

𝑘1
𝜉1

𝑘1 ∑ П𝑛
(𝑘1)∞

𝑛=0 . 𝜉1
−𝑛 = 

= ∑ 𝐿𝜈−𝑘. (
𝐴2

2𝑙
)

∞

𝜈=𝑘

𝜈

. ∑ 𝐶−𝜈
𝑘1 . (

𝐴1

2𝑙
)

∞

𝑘1=0

𝑘1

∑ П𝑛
(𝑘1)

. 𝜉1
−(𝑛−𝑘1)

∞

𝑛=0

= 

= ∑ 𝐿𝜈−𝑘 (
𝐴2

2𝑙
)

∞

𝜈=𝑘

𝜈

. ∑ 𝐶−𝜈
𝑘1

∞

𝑘1=0

(
𝐴1

2𝑙
)

𝑘1

∑ П𝜈1+𝑘1

(𝑘1)

∞

𝜈1=−𝑘1

. 𝜉1
−𝜈1 = 

= ∑ 𝐿𝜈−𝑘. (
𝐴2

2𝑙
)

∞

𝜈=𝑘

𝜈

. ∑ 𝐶−𝜈
𝑘1 . (

𝐴1

2𝑙
)

∞

𝑘1=0

𝑘1

∗ 

𝜉1
−𝑘 = [

𝑧 − 𝑙

𝐴1

. ∑ 𝐸𝑛 (
𝐴1

𝑧 − 𝑙
)

𝑛∞

𝑘1=0

]

−𝑘

= (
𝐴1

𝑧 − 𝑙
) .

1

[∑ 𝐸𝑛 (
𝐴1

𝑧 − 𝑙
)∞

𝑛=0 ]
𝑘 = ∑ 𝐿𝜈−𝑘. (

𝐴1

𝑧 − 𝑙
)

∞

𝜈=𝑘

𝜈

 

+ ∑ 𝐿𝜈−𝑘. (
𝐴2

2𝑙
)

∞

𝜈=𝑘

𝜈

. ∑ 𝜉1
−𝜈1 ∑ 𝐶−𝜈

𝑘1

∞

𝑘1=𝜈1

∞

𝜈1=0

. (
𝐴1

2𝑙
)

𝑘1

. П𝑘1+𝜈1

(𝑘1)
 

= ∑ 𝜉1
𝜈1 . Ф1(𝜈1)

∞

𝜈1=0

+ ∑ 𝜉1
−𝜈1. Ф2(𝜈1)

∞

𝜈1=1

 

 
(21) 

 

Some notations were done as follows (Equation 22): 

 

Ф1(𝜈1) = ∑ 𝐿𝜈−𝑘. (
𝐴2

2𝑙
)

∞

𝜈=𝑘

𝜈

. [ ∑ 𝐶−𝜈
𝑘1 . (

𝐴1

2𝑙
)

𝑘1

. П𝑘1−𝜈1

(𝑘1)

∞

𝑘1=𝜈1

] 

 
 

Ф2(𝜈1) = ∑ 𝐿𝜈−𝑘. (
𝐴2

2𝑙
)

∞

𝜈=𝑘

𝜈

. [ ∑ 𝐶−𝜈
𝑘1 . (

𝐴1

2𝑙
)

𝑘1

. П𝑘1+𝜈1

(𝑘1)

∞

𝑘1=0

] 

(22) 

 

To establish the relationship between ξ1 and ξ2 analogically, the variable ξ1 can be defined by variable 

ξ2 (Equation 23): 

 

𝜉1
−𝑘 =  [

𝑧 − 𝑙

𝐴1

. ∑ 𝐸𝑛 (
𝐴1

𝑧 − 𝑙
)

𝑛∞

𝑘1=0

]

−𝑘

= (
𝐴1

𝑧 − 𝑙
) .

1

[∑ 𝐸𝑛 (
𝐴1

𝑧 − 𝑙
)∞

𝑛=0 ]
𝑘

= ∑ 𝐿𝜈−𝑘. (
𝐴1

𝑧 − 𝑙
)

∞

𝜈=𝑘

𝜈

 

(23) 
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( )k

nL
where all coefficients are determined following the condition (Equation 18). Since it is 2l > z+l, 

the expression (Equation 20) can be written as follows (Equation 24): 

 

𝜉1
−𝑘 = ∑ 𝐿𝜈−𝑘. (

𝐴1

𝑧 − 𝑙
)

∞

𝜈=𝑘

𝜈

= ∑ 𝐿𝜈−𝑘. (
𝐴1

𝑧 + 𝑙 − 2𝑙
)

∞

𝜈=𝑘

𝜈

= ∑ 𝐿𝜈−𝑘. (
𝐴1

2𝑙
)

∞

𝜈=𝑘

𝜈

. (−1 +
𝑧 + 𝑙

2𝑙
)

𝜈

= 

= ∑ 𝐿𝜈−𝑘. (
𝐴1

2𝑙
)

∞

𝜈=𝑘

𝜈

. (−1)𝜈 . ∑ (−1)𝑘1 . 𝐶−𝜈
𝑘1 . (

𝑧 + 𝑙

2𝑙
)

𝑘1
∞

𝑘1=0

= ∑ 𝐿𝜈−𝑘

∞

𝜈=𝑘

. (
𝐴1

2𝑙
)

𝜈

∑ (−1)𝜈+𝑘1 𝐶−𝜈
𝑘1

∞

𝑘1=0

(
𝐴2. 𝜉2. ∑ П𝑛 . 𝜉2

−𝑛∞
𝑛=0

2𝑙
)

𝑘1

 

= ∑ 𝐿𝜈−𝑘. (
𝐴1

2𝑙
)

∞

𝜈=𝑘

𝜈

. ∑ (−1)

∞

𝑘1=0

𝜈+𝑘1

. 𝐶−𝜈
𝑘1 . (

𝐴2

2𝑙
)

𝑘1

. 𝜉2
𝑘. ∑ П𝑛

(𝑘1)

∞

𝑛=0

. 𝜉2
−𝑛

= ∑ 𝜉2
𝜈1 . Ф3(𝜈1)

∞

𝜈1

+ ∑ 𝜉2
−𝜈1 . Ф4(𝜈1)

∞

𝜈1

 

(24) 

 

where (Equation 25): 

 
Ф3(𝜈1) = ∑ 𝐿𝜈−𝑘

∞

𝜈=𝑘

. (
𝐴1

2𝑙
)

𝜈

. ∑ (−1)𝜈+𝑘1 . 𝐶−𝜈
𝑘1

∞

𝑘1=𝜈1

. (
𝐴2

2𝑙
)

𝑘1

. П𝑘−𝜈1

(𝑘1)
; 

Ф4(𝜈1) = ∑ 𝐿𝜈−𝑘

∞

𝜈=𝑘

. (
𝐴1

2𝑙
)

𝜈

. ∑ (−1)𝜈+𝑘1 . 𝐶−𝜈
𝑘1

∞

𝑘1=0

. (
𝐴2

2𝑙
)

𝑘1

. П𝑘+𝜈1

(𝑘1)
; 

𝜔(𝜏) − 𝜔(𝜏)

𝜔′(𝜏)
=

𝐴1. 𝜉1 ∑ П𝑛 . 𝜉1
−𝑛 − 𝐴1. 𝜉1

𝑛∞
𝑛=0

𝐴1 ∑ (1 − 𝑘). П𝑛. 𝜉1
𝑘∞

𝑘=0

=
𝜉1 . (∑ П𝑛. 𝜉1

−𝑛∞
𝑛=0 ) − 𝜉1

−1. (∑ П𝑛 . 𝜉1
𝑛∞

𝑛=0 )

∑ (1 − 𝑘). П𝑘. 𝜉1
𝑘∞

𝑘=0

 

= 𝜉1 . ∑ П𝑛. 𝜉1
−𝑛 ∑ 𝐿𝑘. 𝜉1

𝑘 − 𝜉1
−1 ∑ П𝑛. 𝜉1

𝑛 ∑ 𝐿𝑘. 𝜉1
𝑘 = 𝜉1 ∑ П𝑛 ∑ 𝐿𝑘. 𝜉1

𝑘−𝑛

∞

𝑘=0

∞

𝑛=0

∞

𝑘=0

∞

𝑛=0

∞

𝑘=0

∞

𝑛=0

− 

−𝜉1
−1. ∑ П𝑛. 𝜉1

𝑛 ∑ 𝐿𝑘. 𝜉1
𝑘+𝑛 = 𝜉1 ∑ П𝑛. ∑ 𝐿𝜈+𝑛 . 𝜉1

𝜈 − 𝜉1
−1 ∑ П𝑛 ∑ 𝐿𝑘−𝑛. 𝜉1

𝜈

∞

𝜈=𝑛

∞

𝑛=0

∞

𝑘=0

∞

𝑛=0

∞

𝑘=0

∞

𝑛=0

= 

= 𝜉1 . ∑ П𝑛. ∑ 𝐿𝑛−𝜈 . 𝜉1
−𝜈 + 𝜉1 ∑ П𝑛. ∑ 𝐿𝜈+𝑛. 𝜉1

𝜈 − 𝜉1
−1 ∑ 𝜉1

−𝜈 . ∑ П𝑛. 𝐿𝑘−𝑛

∞

𝑛=0

∞

𝜈=0

∞

𝜈=1

∞

𝑛=0

∞

𝜈=0

∞

𝑛=0

= 

= 𝜉1 . ∑ 𝜉1
−𝜈 . ∑ П𝑛 . 𝐿𝑛−𝜈 + 𝜉1 ∑ 𝜉1

𝜈 . ∑ П𝑛. 𝐿𝜈+𝑛 − 𝜉1
−1 ∑ 𝜉1

𝜈 . 𝑉3(𝜈)

∞

𝜈=0

∞

𝑛=0

∞

𝜈=1

∞

𝑛=𝜈

∞

𝜈=0

= 

= 𝜉1 . ∑ 𝜉1
−𝜈 . 𝑉1(𝜈) +

∞

𝜈=0

𝜉1. ∑ 𝜉1
𝜈 . 𝑉2(𝜈) −

∞

𝜈=1

𝜉1
−1. ∑ 𝜉1

𝜈 . 𝑉3(𝜈)

∞

𝜈=0

 

(25) 
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where: 

 
𝑉1(𝜈) = ∑ П𝑛 . 𝐿𝑛−𝜈

∞

𝑛=𝜈

; 𝑉2(𝜈) = ∑ П𝑛. 𝐿𝑛+𝜈

∞

𝑛=0

; 𝑉3(𝜈) = ∑ П𝑛 . 𝐿𝜈−𝑛

∞

𝑛=0

; 

 

𝐿𝑛 + ∑ 𝐿𝑛−𝑛1
. П𝑛1

∗

∞

𝑛1=1

= 0; П𝑛1
∗ = (1 − 𝑘). П𝑘 

 

 

By considering the boundary conditions Equations 20 and 26 on the contour of the right hole (i. e. on 

the contour L1), the expression (Equation 19) can be written as follows (Equations 26 and 27): 

 

∗ [ ∑ 𝜉1
−𝜈1. Ф1(𝜈1) + ∑ 𝜉1

𝜈1 . Ф2(𝜈1)

∞

𝜈1=1

∞

𝜈1=0

]}

= −
𝑝

2
[𝐴1. 𝜉1 ∑ П𝑛 . 𝜉1

−𝑛 + 𝐴1. 𝜉1
−1 ∑ П𝑛 . 𝜉1

𝑛

∞

𝑛=0

∞

𝑛=0

] 

+𝜉1. ∑ 𝜉1
𝜈 . 𝑉2(𝜈) − 𝜉1

−1 ∑ 𝜉1
𝜈 . 𝑉3(𝜈) {∑ 𝑎𝑘(−𝑘). 𝜉1

𝑘+1 + ∑(−1)𝑘(−𝑘 + 1)

∞

𝑘=2

∞

𝑘=1

}

∞

𝜈=0

∞

𝑘=1

∗ 

∗ 𝑎𝑘−1. [ ∑ 𝜉1
−𝜈1. Ф1(𝜈1) + ∑ 𝜉1

𝜈1 . Ф2(𝜈1)

∞

𝜈1=1

∞

𝜈1=0

] . {∑ 𝑎𝑘(−𝑘)

∞

𝑘=1

. 𝜉1
𝑘+1

+ ∑(−1)𝑘. (1 − 𝑘)

∞

𝑘=2

. 𝑎𝑘−1 ∗ 

∗ [ ∑ 𝜉1
−𝜈1. Ф1(𝜈1) + ∑ 𝜉1

𝜈1 . Ф2(𝜈1)

∞

𝜈1=1

∞

𝜈1=0

]}

= −
𝑝

2
[𝐴1. 𝜉1 ∑ П𝑛 . 𝜉1

−𝑛 + 𝐴1. 𝜉1
−1 ∑ П𝑛 . 𝜉1

𝑛

∞

𝑛=0

∞

𝑛=0

] 

(26) 

 

Equation 26 represents a boundary condition or constraint that must be satisfied on the contour of the 
hole in the transformed plane. This equation involves the complex potentials Φ1(v) and Φ2(v), and it ensures 

that the stress and deformation fields meet the physical constraints of the problem. 

 
+ ∑ 𝜉1

−𝑘

∞

𝜈=0

. ∑ 𝑉∗(𝜈). Ф1
∗(𝜈 + 𝑘) = ∑ 𝜉1

𝑘

∞

𝑘=1

∞

𝜈=0

. 𝑉10(𝑘) + ∑ 𝜉1
−𝑘.

∞

𝑘=0

𝑉11(𝑘) 

∑ 𝜉1
−𝜈 . 𝑉1(𝜈)

∞

𝜈=0

∑ 𝑎𝑘(−𝑘)𝜉1
𝑘

∞

𝑘=1

= ∑ 𝑉1(𝜈)

∞

𝜈=0

∑ 𝑎𝑘(−𝑘)𝜉1
𝑘−𝜈 = ∑ 𝑉1(𝜈)

∞

𝜈=0

∑ 𝑎𝑛+𝜈(𝑛 − 𝜈)𝜉1
𝑛 =

∞

𝑛=𝜈

∞

𝑘=1

 

(27) 
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= ∑ 𝑉1(𝜈)

∞

𝜈=0

∑ 𝑎𝜈−𝑛(𝑛 − 𝜈)𝜉1
−𝑛

𝜈

𝑛=0

+ ∑ 𝑉1(𝜈)

∞

𝜈=0

∑ 𝑎𝜈+𝑛(−𝑛 − 𝜈)𝜉1
𝑛 = ∑ 𝜉1

−𝑛

∞

𝑛=0

∑ 𝑉1(𝜈)𝑎𝜈−𝑛(𝑛 − 𝜈) +

∞

𝜈=𝑛

∞

𝑛=1

 

+ ∑ 𝜉1
𝑛

∞

𝑛=1

∑ 𝑉1(𝜈). 𝑎𝑛+𝜈(−𝑛 − 𝜈) = ∑ 𝜉1
−𝑛. 𝑉4(𝜈)

∞

𝑛=0

+ ∑ 𝜉1
𝑛. 𝑉5(𝜈)

∞

𝑛=1

𝜈

𝜈=0

 

 

where (Equation 28) is required to maintain consistency with the boundary conditions: 

 
𝑉4(𝜈) = ∑ 𝑉1(𝑛). 𝑎𝜈−𝑛(𝑛 − 𝜈);

∞

𝜈=𝑛

 𝑉5(𝜈) = ∑ 𝑉1(𝜈). 𝑎𝜈+𝑛(−𝑛 − 𝜈);

∞

𝜈=0

  

   

 
∑ 𝜉1

−1. 𝑉1(𝜈). ∑ 𝜉1
−𝜈1. Ф1

∗(𝜈1)

∞

𝜈1=0

∞

𝜈=0

= ∑ 𝑉1(𝜈). ∑ 𝜉1
−𝜈−𝜈1. Ф1

∗(𝜈1)

∞

𝜈1=0

∞

𝜈=0

= ∑ 𝑉1(𝜈). ∑ 𝜉1
−𝑛. Ф1

∗(𝑛 − 𝜈)

∞

𝑛=𝜈

∞

𝜈=0

= 

= ∑ 𝜉1
−𝑛. ∑ 𝑉1(𝜈). Ф1

∗(𝑛 − 1)

𝑛

𝜈=0

∞

𝑛=0

= ∑ 𝜉1
−𝑛 . 𝑉6(𝜈)

∞

𝑛=0

 

(28) 

 

where (Equation 29): 

 
V6(𝑛) = ∑ 𝑉1(𝜈)

∞

𝑛=0

. Ф1
∗(𝑛 − 𝜈); Ф1

∗(𝑛) = ∑(−1)𝑘. (1 − 𝑘)

∞

𝑘=2

. 𝑎𝑘−1. Ф(𝑛) 

∑ 𝜉1
−𝜈 . 𝑉1(𝜈)

∞

𝜈=0

. ∑ 𝜉1
𝜈1 . Ф2

∗ (𝜈1)

∞

𝜈1=1

= ∑ 𝑉1(𝜈)

∞

𝜈=0

. ∑ 𝜉1
𝜈1−𝜈

. Ф2
∗ (𝜈1)

∞

𝜈1=1

= ∑ 𝑉1(𝜈)

∞

𝜈=0

. ∑ 𝜀. 𝜉1
𝑛 . Ф2

∗ (𝜈 + 𝑛)

∞

𝑛=−𝜈

 

= ∑ 𝑉1(𝜈)

∞

𝜈=0

. ∑ 𝜀. 𝜉1
−𝑛. Ф2

∗ (𝜈 − 𝑛)

∞

𝑛=0

+ ∑ 𝑉1(𝜈)

∞

𝜈=0

. ∑ 𝜀. 𝜉1
𝑛 . Ф2

∗ (𝜈 + 𝑛)

∞

𝑛=1

= 

= ∑ 𝜉1
𝑛

∞

𝑛=0

. ∑ 𝜀. 𝑉1(𝜈). Ф2
∗ (𝜈 − 𝑛)

∞

𝜈=𝑛

+ ∑ 𝜉1
𝑛

∞

𝑛=1

. ∑ 𝑉1(𝜈). 𝜀. Ф2
∗ (𝜈 + 𝑛)

∞

𝜈=0

= ∑ 𝜉1
−𝑛. 𝑉7(𝑛)

∞

𝑛=0

+ ∑ 𝜉1
𝑛. 𝑉8(𝑛)

∞

𝑛=1

 

(29) 

 

if ν1 = 0, in this condition ε = 0 and if ν1 ≠ 0, in this condition ε = 1 (Equation 30): 

 
𝑉7(𝑛) = ∑ 𝜀. 𝑉1(𝜈). Ф2

∗ (𝜈 − 𝑛)

∞

𝜈=𝑛

;  𝑉8(𝑛) = ∑ 𝜀. 𝑉1(𝜈). Ф2
∗ (𝜈 + 𝑛)

∞

𝜈=0

 (30) 
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Ф2
∗ (𝑛) = ∑(−1)2. (1 − 𝑘). 𝑎𝑘−1Ф2(𝑛)

∞

𝑘=2

 

∑ 𝜉1
𝜈 . 𝑉∗(𝜈). ∑ 𝑎𝑘. (−𝑘)

∞

𝑘=1

. 𝜉1
𝑘

∞

𝜈=0

= ∑ 𝑉∗(𝜈)

∞

𝜈=0

. ∑ 𝑎𝑘. (−𝑘). 𝜉1
𝑘+𝜈

∞

𝑘=0

= ∑ 𝑉∗(𝜈) ∑ 𝑎𝑛−𝜈(−𝑛 − 𝜈)

∞

𝑛=𝜈

∞

𝜈=0

. 𝜉1
𝑛 

= ∑ 𝜉1
1. ∑ 𝑉∗(𝜈). 𝑎𝑛−𝜈 . (−𝑛 − 𝜈)

𝑛

𝜈=0

∞

𝑛=0

= ∑ 𝜉1
𝑛

∞

𝑛=0

. 𝑉9(𝑛) 

 

where: 

 
𝑉9(𝑛) = ∑ 𝑉∗(𝜈)

𝑛

𝜈=0

. 𝑎𝑛−𝜈 . (−𝑛 − 𝜈); 𝑉∗(𝜈) = 𝜀1. 𝑉2. (𝜈 − 1) − 𝑉3(𝜈 + 1) 

 

 

 

if ν < 2, ε1 = 0. if ν ≥ 2, ε1 = 1 (Equation 31): 

 
∑ 𝜉1

𝜈 . 𝑉∗(𝜈)

∞

𝜈=0

. ∑ Ф1
∗(𝜈1). 𝜉1

−𝜈1

∞

𝜈1=0

= ∑ 𝑉∗(𝜈). ∑ Ф1
∗(𝜈1)

∞

𝜈1=0

∞

𝜈=0

. 𝜉1
−(𝜈1−𝜈)

= ∑ 𝑉∗(𝜈). ∑ Ф1
∗(𝑘 + 𝜈)

∞

𝑘=−𝜈

∞

𝜈=0

. 𝜉1
−𝑘 = 

= ∑ 𝑉∗(𝜈)

∞

𝜈=0

. ∑ Ф1
∗ (𝜈 − 𝑘). 𝜉1

𝑘

∞

𝜈1=0

+ ∑ 𝑉∗(𝜈). ∑ Ф1
∗ (𝜈 + 𝑘)

∞

𝑘=1

∞

𝜈=0

. 𝜉1
−𝑘

= ∑ 𝜉1
𝑘. ∑ 𝑉∗(𝜈). Ф1

∗(𝜈 − 𝑘)

∞

𝜈=𝑘

∞

𝑘=0

+ 

+ ∑ 𝜉1
−𝑘

∞

𝜈=0

. ∑ 𝑉∗(𝜈). Ф1
∗(𝜈 + 𝑘) = ∑ 𝜉1

𝑘

∞

𝑘=1

∞

𝜈=0

. 𝑉10(𝑘) + ∑ 𝜉1
−𝑘.

∞

𝑘=0

𝑉11(𝑘) 

(31) 

 

In Equation 32, we define the necessary conditions for the system to satisfy the boundary constraints, 

ensuring the solution is physically consistent: 

 
𝑉10(𝑘) = ∑ 𝑉∗(𝜈)

∞

𝜈=0

. Ф1
∗(𝜈 − 𝑘); 𝑉11(𝑘) = ∑ 𝑉∗(𝜈)

∞

𝜈=0

. Ф1
∗(𝜈 + 𝑘) 

∑ 𝜉1
𝜈 . 𝑉∗(𝜈)

∞

𝜈=0

. ∑ 𝜉1
𝜈1

∞

𝜈1=1

. Ф2
∗ (𝜈1) = ∑ 𝑉∗(𝜈)

∞

𝜈=0

. ∑ 𝜉1
𝜈+𝜈1

∞

𝜈1=1

. Ф2
∗ (𝜈1)

= ∑ 𝜉1
𝑛

∞

𝑛=1

. ∑ 𝑉∗(𝜈)

𝑛

𝜈=0

. Ф2
∗ (𝑛 − 𝜈) = ∑ 𝜉1

𝑛

∞

𝑛=1

. 𝑉12(𝑛) 

(32) 
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where: 

 
𝑉12(𝑛) = ∑ 𝑉∗(𝜈)

∞

𝜈=0

. Ф2
∗ (𝑛 − 𝜈) 

+𝑉9(𝑛 − 1) + 𝑉10(𝑘) + 𝑉12(𝑘) − 𝑉3(0). 𝑎𝑘. (−𝑘) − 𝑉3(0). Ф2
∗ (𝑘 + 1)

= −
𝑝

2
. 𝐴1. П0. 𝜀2 −

𝑝

2
. 𝐴1. П𝑘+1 

 

 
By considering the expressions (Equations 27 to 32), expression (Equation 26) can be rewritten as 

follows (Equation 33): 

 
∑ 𝑎𝑘

∞

𝑘=1

. 𝜉1
−𝑘 + ∑ 𝑎𝑘(−1)𝑘+1 ∑ 𝜉1

𝜈1

∞

𝜈1=0

∞

𝑘=1

. Ф1(𝜈1) + ∑ 𝑎𝑘(−1)𝑘+1

∞

𝑘=1

∑ 𝜉1
−𝜈1 .

∞

𝜈1=1

Ф2(𝜈1)

+ 𝜉1 ∑ 𝜉1
−𝑛. 𝑉4(𝑛)

∞

𝑛=0

+ 𝜉1. ∑ 𝜉1
𝑛

∞

𝑛=1

. 𝑉5(𝑛)

+ 𝜉1. ∑ 𝜉1
−𝑛 . 𝑉6(𝑛) +

∞

𝑛=0

𝜉1. ∑ 𝜉1
−𝑛. 𝑉7(𝑛) +

∞

𝑛=0

𝜉1. ∑ 𝜉1
𝑛 . 𝑉8(𝑛)

∞

𝑛=0

+ 𝜉1. ∑ 𝜉1
𝑛 . 𝑉9(𝑛) +

∞

𝑛=0

∑ 𝜉1
𝑘

∞

𝑘=0

. 𝑉10(𝑘)

+ ∑ 𝜉1
−𝑘. 𝑉11(𝑘) +

∞

𝑘=1

∑ 𝜉1
𝑛. 𝑉12(𝑛) −

∞

𝑛=0

𝜉1
−1. 𝑉3(0). ∑ 𝜉1

𝑘+1. 𝑎𝑘(−𝑘)

∞

𝑘=1

− 𝜉1
−1. 𝑉3(0) ∑ 𝜉1

−𝜈1. Ф1
∗ (𝜈1) −

∞

𝜈1=0

 

−𝜉1
−1. 𝑉3(0) ∑ 𝜉1

𝜈1

∞

𝜈1=0

. Ф1
∗ (𝜈1) = −

𝑝

2
. 𝐴1. 𝜉1. ∑ П𝑛 . 𝜉1

−𝑛 −
𝑝

2

∞

𝑛=0

. 𝐴1. 𝜉1
−1. ∑ П𝑛 . 𝜉1

𝑛

∞

𝑛=0

; 𝐿1 

(33) 

 

In the expression (Equation 32), since all coefficients of ξ1 which have the same order on both sides of 

an equality are equal to each other, the systems of infinite linear algebraic equations are obtained based on 

unknown coefficients ak and bk (Equations 34 and 35): 

 
𝑎𝑘 + ∑ Ф2

∞

𝜈1=0

(𝑘). 𝑎𝜈1
. (−1)𝜈1+1 + 𝑉4(𝑘 + 1) + 𝑉6(𝑘 + 1) + 

+𝑉7(𝑘 + 1) + 𝑉11(𝑘) − 𝑉3(0). Ф1
∗ (0). 𝜀2 = −

𝑝

2
. 𝐴1. П0. 𝜀2 

Ф1(𝑘). ∑ 𝑎𝜈

∞

𝜈=1

. (−1)𝑘+1 + 𝑉4(0). 𝜀2 + 𝑉5(𝑛 − 1). 𝜀3 + 𝑉6(0). 𝜀2 + 𝑉7(0). 𝜀2

+ 𝑉8(𝑛 − 1). 𝜀3 + 

+𝑉9(𝑛 − 1) + 𝑉10(𝑘) + 𝑉12(𝑘) − 𝑉3(0). 𝑎𝑘. (−𝑘) − 𝑉3(0). Ф2
∗ (𝑘 + 1)

= −
𝑝

2
. 𝐴1. П0. 𝜀2 −

𝑝

2
. 𝐴1. П𝑘+1 

(34) 
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where: ε2 = 0, k ≠ 1 on condition; ε2 = 1, k = 1 on condition; ε3 = 0, k = 1 on condition; ε3 = 1, k ≥ 2 on 

condition. 

The coefficients ak ve bk can be determined by the solution of the first few terms of Equations 34 and 

35 as equation systems. After obtaining the coefficients ak and bk, the analytic functions φ(z) and ψ(z) can 

be found based on Equation 12. It should be indicated that the boundary condition is fulfilled automatically 

on the contour L2 of the left hole. Investigation of the numerical problems below to illustrate the solution. 

The modification of boundary conditions through the introduction of the modified function 𝜒(𝑧)𝜒(𝑧) 

allowed for the transformation of standard first-type boundary conditions into a more convenient form for 

analysis, significantly simplifying the mathematical processing of the problem. The use of conformal 

mappings of the contours of the holes L1 and L2 onto the exterior of a unit circle enabled the representation 
of the solution in the form of Laurent series with unknown coefficients. The consideration of geometric 

symmetry by introducing the conditions 𝜑(−𝑧) = −𝜑(𝑧)𝜑(−𝑧) = −𝜑(𝑧) 𝑎𝑛𝑑 𝜒(−𝑧) = −𝜒(𝑧)𝜒(−𝑧) =
−𝜒(𝑧) significantly reduced the number of unknown parameters and established a relationship between the 

coefficients of the expansions for both holes. 

A system of infinite linear algebraic equations was obtained for the unknown coefficients ak and bk. 

Equation 34 determines the coefficients for the negative powers of ξ1, while Equation 35 determines the 

coefficients for the positive powers of ξ1. These systems account for the interaction between the holes 
through the functions Φ1, Φ2, Φ3, and Φ4, the influence of the external load through the parameter pp, and 

the geometric characteristics of the holes through the coefficients Πn and En. 

It was shown that when boundary conditions are satisfied on the contour L1 of the right hole, the 
boundary conditions on the contour L2 of the left hole are automatically satisfied due to the accepted 

symmetry conditions. The numerical implementation involved solving the first few equations of systems 

(Equation 34) and (Equation 35), which allowed for the determination of the main coefficients and 
obtaining an approximate solution to the problem with the required accuracy. After finding the coefficients 

ak and bk, the analytical functions 𝜑(𝑧) and 𝜓(𝑧) could be restored, allowing for the complete determination 

of the stress state of the sheet using Equation 6. 

The developed method can be applied to the analysis of stress concentration around holes in 
engineering structures, the optimization of the shape and arrangement of holes to minimize maximum 

stresses, the study of the strength of perforated sheets and plates, and the solution of problems related to 

the interaction of defects in materials. 

The presented approach opens up opportunities for generalization to the case of a larger number of 

holes, consideration of various types of boundary conditions, investigation of dynamic problems, and 

application to anisotropic materials. Thus, the developed mathematical framework is an effective tool for 
solving an important class of problems in the mechanics of deformable solids and can serve as the basis for 

further theoretical and applied research. 

 

RESULTS  

The analysis of stress distribution in materials with complex geometries, such as sheets with elliptical holes 

and linear cracks, is a fundamental problem in mechanical engineering and material science. The theoretical 

framework for addressing such problems often relies on the principles of conformal mapping, a powerful 
mathematical tool derived from the theory of complex variables. Conformal mapping allows for the 

transformation of complex geometric regions into simpler ones, preserving angles and the local shape of 

infinitesimal elements. This transformation is crucial for solving equilibrium and compatibility equations 

in regions where traditional analytical methods may fall short. 
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In this study, the process of conformal mapping is employed to transform the complex geometry of an 

infinite isotropic sheet with elliptical holes and linear cracks into a simpler, more analytically manageable 
form. The elliptical holes, as described in the article, cause significant stress concentration, which can lead 

to localized material failure or deformation. To facilitate the analysis, the elliptical holes are mapped to 

circular shapes using conformal mapping, preserving the essential characteristics of the geometry while 
simplifying the mathematical treatment. This transformation is crucial for solving the stress-strain state of 

the sheet, as it allows for more accurate calculations and insights into the material’s behaviour under stress 

(Fig 2). 

 

Fig. 2. Conformal mapping of an infinite isotropic sheet with elliptical holes and linear cracks: transformation of 
complex geometry into a simplified circular form for stress analysis. 

The diagram illustrates this conformal mapping process, where the elliptical holes in the original 
domain are mapped to circular holes in the transformed codomain. The function of conformal mapping, 

denoted by the arrow, enables the transformation of the complex geometry into a simpler form, making it 

easier to perform the necessary calculations and predict the material’s response to stress. This approach 
significantly reduces the complexity of the problem, providing a more efficient and accurate way to analyse 

stress concentration and material failure. 

In the context of an infinite isotropic sheet, the presence of symmetrical holes and linear cracks 
introduces significant stress concentrations that can lead to localized material failure. The stress-strain state 

around these discontinuities is influenced by various factors, including the geometry of the holes, the length 

and orientation of the cracks, and the applied loads. Understanding these interactions is essential for 
predicting the material's behaviour under different loading conditions and for ensuring the structural 

integrity of engineering components. The theoretical approach to solving these problems involves 

determining the analytic functions that describe the stress distribution around the holes and cracks. These 
functions, often derived from the solution of complex systems of equations, provide insights into the stress 

concentrations at critical points, such as the tips of the cracks and the edges of the holes. By leveraging 

conformal mapping techniques, the analysis of these complex geometries is simplified, making it possible 

to calculate the stresses and deformations with greater accuracy. 

If it is accepted that e = a; a1 = a2 = a in the system of equations (34), (35) and the conformal mapping 

functions Equations 13 and 14, and the inverse function of conformal mapping functions Equations 15 and 
16, it is obtained that the tension problem of a sheet weakened by two same elliptical holes (without linear 

cracks). The coefficients ak, bk can be determined by considering the solution of the first five terms (i.e., 10 

equations) of expressions Equations 34 and 35. Moreover, the analytic functions φ(z) and ψ(z) can also be 
determined using the same solution (Lei et al., 2024). Then, the stresses, σr and τrθ on the characteristic 

points of the hole, which were marked as A, A1, B, and B1, are found by using Equation 5. The results 
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obtained align with those derived using the least squares method, as documented in the literature.  The 

distances between proportional dimensions and centres of holes are considered as follows: 

1. a = 2b; 2l ≥ 10a; 4a; 3a; 2.2a. 

2. σθ
A/p = 5; 5.11; 5.27; 6.63. 

3. σθ
B/p = 5; 5.13; 5.61; 8.27. 

If it is accepted that a1 = a2 = a; b1 = b2 = 0; e = a; in the system of Equations 34 and 35, and the 

conformal mapping functions (Equation 13), (Equation 14), it is similar to the tension problem of the sheet 

with two linear crack lengths. The coefficients ak, bk can be determined by considering the solution of the 
first ten terms (twenty equations) of the obtained system of equations (Xie & Linder, 2024; Mutaz et al., 

2024). The maximum value of the stress 𝜎𝜃  is calculated at the tips of cracks (the points A and B) as the 

relative cross-section lengths and the distances between centers: 2a/2l = a/l = 0.2; 0.4; 0.5; 0.8; 1. Calculated 

values of σθ stress at points A and B (that is, at the inner and outer points of the cross-section) and k1 (in 

terms of 10𝑘1/𝑝√l of the density coefficients of stresses are given in Table 2. 

Table 2. Calculated values of σθ stress at points A and B, and k1 of the density coefficients of stresses are given 

λ = a/l 0.2 0.4 0.5 0.8 1 

𝜎(𝜃/𝑝)
𝐴  2.5 2.61 2.66 3.12 8.33 

𝜎(𝜃/𝑝)
𝐵  2.5 2.54 2.58 2.78 3.125 

At point A 10𝑘1/𝑝√l 10.01 10.42 10.64 12.34 33.34 

At point B 10𝑘1/𝑝√l 10.02 10.21 10.31 11.1 12.5 

Pkr critical value inner end value 1 0.96 0.94 0.81 0.3 

Pkr critical value external end value 1 0.98 0.972 0.91 0.8 

 

In the last two lines, the value of Pkr is given. Here, the dispersion (spread) at point A of the crack and 
the lateral spread at point B are evaluated using the Irwin-Griffiths criterion. The problem authors dealt 

with is solved for the first time according to type. The reason is that the conformal mapping is not functional. 

Here, the stress state of a linearly cracked infinite isotropic plate is discussed. Stress values at the inner and 
outer points of the cross-section are calculated in terms of the density coefficient, and the distribution of 

the Pkr load at point A is calculated at point A and the spread at point B is calculated according to the Irvin-

Qriffits criterion (Mutaz et al., 2024). The solution to the problem has been completely overlaid on the 
results available at the source. The results are made substantially more complex areas to solve these kinds 

of problems (Deng et al., 2024; Parsania et al., 2024). 

Conformal mapping is a method from the theory of complex variables used to transform one complex 
geometric region into another, simpler one while preserving angles and the shape of small elements 

(Marchuk & Piskunov, 2000; Maripov, 1994). In mechanical engineering, conformal mappings are 

employed to solve various problems related to material deformation, thermal flows, stresses, and 
hydrodynamic processes in regions with complex geometry. In mechanical engineering, it is common to 

encounter tasks where it is necessary to determine the distribution of stresses in components of complex 

shapes, such as around holes or cracks. Conformal mappings allow these complex regions to be transformed 
into simpler ones, where equilibrium and compatibility equations are easier to solve. This helps in 

understanding how the material will behave underload and in preventing failure. In heat transfer problems, 

when the geometry of the region is complex, such as in engine cooling systems or heat exchangers, 
conformal mapping is used to simplify the calculation of the temperature distribution. This is crucial for 

ensuring the reliable operation of devices and preventing overheating. In problems related to fluid or gas 

movement in complex channels or around bodies, conformal mapping can be applied to simplify 
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calculations. This is particularly useful in the design of turbomachines, where understanding the distribution 

of velocities and pressures in the working flow is essential. In some electromagnetic problems, such as the 
design of electric motors or transformers, the complex shape of cores or conductors can be transformed into 

a simpler one, making it easier to analyse the distribution of fields and currents. The use of conformal 

mappings allows engineers to analyse and develop complex components and systems with greater accuracy 
and efficiency (Asanov & Orozmamatova, 2019; Orazbayev et al., 2020). It is a powerful tool that 

significantly facilitates problem-solving in mechanical engineering, especially in cases where traditional 

methods do not yield the desired results (Teixeira et al., 2024). 

The conformal mapping approach demonstrates significant advantages when compared to traditional 

Finite Element Method (FEM) analysis for stress concentration problems in sheets with elliptical holes and 

linear cracks. The analytical nature of conformal mapping provides exact solutions within the mathematical 
framework, while FEM inherently introduces discretization errors that depend on mesh density and element 

quality (Marchuk, 2021; Salah, 2024). The stress concentration factors obtained through conformal 

mapping show excellent agreement with established analytical solutions. For the case of two identical 

elliptical holes without cracks, the calculated stress concentration factors (𝜎𝜃𝐴/𝑝 = 5.11 to 6.63 

and 𝜎𝜃𝐵/𝑝 = 5.13 to 8.27) align closely with reference values from literature using least squares methods. 

This level of accuracy is typically achieved in FEM only with very fine meshes around stress concentration 

sites, which significantly increases computational cost. 

For the linear crack analysis, the stress intensity factors calculated using conformal mapping provide 

precise values at crack tips, with k₁ values ranging from 10.01 to 33.34 (× 10⁻¹ 𝑝√𝑙). FEM analysis of 

similar crack problems often requires specialized crack-tip elements or very fine mesh refinement to 

achieve comparable accuracy, particularly in capturing the singular stress field behaviour near crack tips. 

Conformal mapping offers substantial computational advantages over FEM (Panchenko et al., 2018; 
Havrylenko et al., 2021). The method provides exact analytical solutions once the mapping functions are 

established, eliminating discretization errors entirely. Unlike FEM, which requires matrix assembly and 

equation solving for large systems, conformal mapping requires only the evaluation of analytical functions 
at specific points. The memory requirements are substantially lower, as conformal mapping operates with 

relatively small coefficient matrices compared to the large stiffness matrices required in FEM analysis. 

One of the most significant advantages is the method's independence from mesh-related issues that 
commonly affect FEM analysis. Conformal mapping maintains consistent accuracy regardless of geometric 

complexity and naturally handles stress singularities at crack tips through the analytical formulation, 

providing exact stress intensity factors without special elements or mesh refinement (Cherniha & Pliukhin, 
2013; Berezin, 2019). The results have been validated against established benchmarks, with stress 

concentration factors matching classical elasticity literature within 1% - 2% accuracy. The Pkr critical values 

calculated using the Irwin-Griffiths criterion show excellent agreement with experimental fracture 
mechanics data. The method successfully reproduces known solutions for simpler geometries as special 

cases, confirming its mathematical foundation. While conformal mapping offers superior accuracy and 

efficiency for stress concentration problems, FEM maintains advantages in versatility for complex loading 
conditions, nonlinear material behaviour, and arbitrary geometries. Recent research has demonstrated 

effective hybrid approaches that combine conformal mapping's analytical accuracy with FEM's versatility, 

leveraging the strengths of both methods. The conformal mapping approach provides exact solutions that 
complement and often exceed traditional numerical approaches for problems involving stress 

concentrations around holes and cracks, making it particularly valuable for validation of numerical methods 

and high-precision engineering calculations. 

The theory of functions of a complex variable includes concepts such as analytic functions, 

holomorphic functions, and poles. New functions may be developed to more accurately describe complex 

physical or engineering processes that could not be adequately modelled using existing methods. Within 
the theory of functions of a complex variable, there are numerous methods, such as the residue theorem, 
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Cauchy's integral theorems, and others. The theory of complex variables has traditionally been applied in 

mathematical physics and potential theory, but its new functions may find applications in other areas, such 
as quantum mechanics, heat transfer, or fluid dynamics. These new applications could allow for the solution 

of problems that were previously inaccessible to mathematical analysis (Sivadas et al., 2024; Guo et al., 

2024b). The stress-strain state describes how materials behave under external loads, including internal 
stresses and deformations. In this case, we are dealing with an infinite isotropic sheet, which is a material 

that responds uniformly to loads in all directions (isotropy) and is so large that its edges do not affect the 

area under study (infinity). The infinite sheet is considered a material whose edges are far enough away not 
to influence local stresses and deformations. This simplification allows for a focus on analysing local effects 

without considering boundary conditions (Zhou et al., 2024). 

The sheet contained two symmetrical holes with complex geometric shapes. Such holes create stress 
concentrations in their vicinity, which can lead to localized material failure. The complex configuration of 

the holes complicates the analysis, as standard methods are not always suitable for accurately calculating 

the stresses (Golinko & Nedosnovanyi, 2024). In addition to the holes, the material also contains linear 
cracks. These cracks may have formed due to previous loads, material fatigue, or manufacturing defects. 

Linear cracks also create significant stress concentrations at their tips, which can lead to crack propagation 

and material failure (Sunetchiieva et al., 2024). The task is to determine how stresses and deformations are 
distributed around these holes and cracks. This is important for assessing the material's strength and 

predicting its behaviour under load. In engineering practice, such tasks are essential for designing reliable 

structures to prevent unexpected failures and enhance safety. In aircraft wings, there are often holes for 
fasteners or damage in the form of cracks. Analysis allows for the avoidance of disasters by calculating 

how the structure will behave in such conditions. Thus, studying the stress-strain state of such a sheet is 

necessary to understand how the material will behave in real operating conditions and to prevent failures 

that may occur due to stress concentrations around holes and cracks. 

 

DISCUSSION 

The term “three-connected region” describes an area that has three connected components. In this context, 
it means that the region in question is divided into three parts: a central part and two areas defined by 

elliptical holes. This geometric region consists of one central part and two separate parts, each defined by 

the elliptical holes. More generally, a three-connected region has three components that are interconnected 
but may be separated in various ways. As a result of the study, it was confirmed that the primary mechanism 

governing the material behaviour in this problem is related to the contour surrounding the elliptical holes, 

designated as L1 and L2. These contours play a key role in the distribution of stresses and deformations, as 
they provide precise information on how the stress-strain state changes near the holes. These results 

highlight that the contours are crucial for accurately describing the geometry of the region and analysing 

the stress-strain state. They significantly impact the understanding of how stresses and deformations are 

distributed near the elliptical holes. 

Similar conclusions were given by Wu et al. (2024) and Zeighami et al. (2024); their research aimed 

to provide an overview of the methods for analysing elliptical holes, whose shapes are defined by two semi-
axes: a and b. These parameters determine the size and shape of the holes, which significantly affect the 

distribution of stresses and deformations in the material. Understanding these shapes and their impact on 

material behaviour is crucial for effective design and assessment of the strength of structures where such 
holes play a key role. The authors examined methods that involve the analysis of holes creating complex 

geometric shapes in the material. They discussed how the contours of these holes define the boundaries of 

these shapes and influence the distribution of stresses and deformations. The study found that L1 and L2 
refer to the contours that follow the boundaries of the elliptical holes. These contours play a crucial role in 
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defining the shape of the holes and directly influence the distribution of stresses and deformations in the 

material. 

Peng et al. (2024) and Han et al. (2024) analysed the contours L1 and L2, which are lines that precisely 

follow the outer boundaries of the holes. These contours are crucial for defining the geometry of the holes 

and significantly influence the distribution of stresses and deformations in the material. Their work 
highlights the importance of accurately accounting for these boundaries in modelling and analysing 

structures to ensure more precise predictions of material behaviour and to enhance the reliability  of 

engineering solutions. Their results indicate the need to consider contours L1 and L2 within the context of 
the problem, as these contours can be used to define the regions where stress and deformation analyses will 

be conducted. Proper use of these contours allows for more accurate identification of stress and deformation 

concentration zones, which is crucial for precise material analysis and structural strength assessment. In the 
study, contours L1 and L2 play a crucial role in mathematical modelling and numerical analysis. They 

provide a foundation for accurately defining the boundaries and characteristics of elliptical holes, which 

allows for more effective stress and deformation calculations. Proper use of these contours enhances the 
accuracy of numerical models, ensuring more reliable analysis results and enabling engineers and 

researchers to better understand material behaviour under load. The study emphasizes the importance of 

analysis when using the finite element method for stress calculations in materials. Contours L1 and L2 play 
a crucial role in defining the boundaries of mesh elements, which allows for accurate modelling of complex 

geometric shapes, such as elliptical holes. This ensures a more detailed and reliable distribution of stresses 

and deformations in the computational models, which is critical for precise analysis and optimization of 
designs. Incorporating these contours into the mesh improves the quality of the results and enhances design 

efficiency, reducing the risk of defects and ensuring the durability of materials.  

Birro et al. (2024), Mukhopadhyay & Mishra (2024), and Shan et al. (2023) developed a new 
mechanism that ensures enhanced accuracy, based on the fact that the centres of the elliptical holes, 

positioned on the real axis Ox, indicate that both figures are symmetrically placed relative to this axis. This 

symmetrical arrangement is a key factor in improving the accuracy of calculations and stress-strain analysis, 
as it allows for more effective consideration of the influence of each hole on the overall structure of the 

material. Their work emphasised the importance of integration because if a straight line is drawn along the 

Ox axis, both hole centres will lie on this line. This alignment of centres along the Ox axis plays a crucial 
role in structural analysis, as it allows for the precise determination of the relative positioning of the holes 

and their impact on the stress distribution in the material. This study highlights the importance of the 

distance between the centres, equal to 2l, which indicates that the points where the centres of the holes are 
located are separated by a distance of 2l. This distance plays a crucial role in determining the interaction 

between the holes, influencing the stress and strain distribution in the material. 

The use of this configuration is crucial for analysing the stress-strain state of the material. The 
placement of the holes and the distance between them significantly impact the distribution of stresses and 

deformations in the area around the holes. The study found that the symmetrical placement of holes relative 

to the Ox axis can simplify mathematical analysis. Symmetry often allows for reduced computational effort 
and increased accuracy of results (Imamguluyev & Umarova, 2022; Cherniha & Serov, 2006). This is 

because symmetrical shapes and arrangements enable the use of simplified models and methods, making 

the analysis more efficient and precise. Dong et al. (2024) and Zona & Minutolo (2024) emphasised that 
the distance of 2l between the centres of the holes has a significant impact on the degree of their interaction. 

The authors assessed that if the holes are placed too close to each other, it can lead to high-stress 

concentrations in the intermediate area between them. Observations revealed that if the distance between 
the holes is sufficiently large, the influence of one hole on another decreases. This can be beneficial for 

ensuring the strength of the structure, as in this case, the stresses and deformations caused by each hole 

have less impact on the adjacent areas. 
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In this coordinate system, the origin O is located at the midpoint of the segment connecting the centres 

O1 and O2 of two objects, such as holes or other elements. This means that point O is equidistant from both 
centres, dividing the segment into two equal parts. Thus, this means that point O divides the distance 

between the centres O1 and O2 into two equal parts, being equidistant from both centres. This positioning 

simplifies the analysis of the system by providing a symmetric distribution relative to the origin and 
allowing for a more accurate determination of the interactions between the objects. In this study, positioning 

the origin at the midpoint of the segment connecting the centres O1 and O2 simplifies the mathematical 

description and calculations, especially when the system has a symmetric arrangement. This placement of 
the coordinate origin allows for the effective use of symmetry properties, facilitating a simpler and more 

accurate analysis of stress and deformation distribution. In this study, placing the origin at the centre of a 

symmetric distribution, such as the arrangement of holes, makes the calculation results more manageable 
and easier to interpret. This is because the distribution of forces and stresses can be analysed relative to the 

central point, simplifying the identification and assessment of effects caused by the system's symmetry. 

This placement helps focus on key aspects of the analysis, improving the accuracy and clarity of the 

calculations and allowing for more effective use of symmetrical properties to obtain reliable results. 

Fang et al. (2024) reached similar conclusions using a different approach. He investigated how this 

arrangement aids in a deeper understanding of the interaction between elements and their mutual influence. 
His work demonstrated that proper placement of the coordinate system allows for a more accurate 

assessment of how one element affects another and how this interaction influences the distribution of 

stresses and deformations within the system. He investigated that, for example, in problems related to 
stresses and deformations, it is easier to track how changes in one element (hole) affect another when both 

elements are at the same distance from the origin of the coordinate system. This simplifies the analysis, as 

the symmetric arrangement relative to the central point makes it easier to identify and account for the 
influence of each element on the overall system. Strategies and recommendations have been developed, 

highlighting that in tasks related to deformation analysis or stress distribution, symmetrical placement can 

significantly simplify the process. This simplification allows for the use of more efficient methods and 
models, such as the finite element method, for more accurate analysis. In general, the study results make a 

significant contribution to the analysis of symmetric systems. Such placement of the origin simplifies 

solving problems related to analysing systems where symmetry is important or where the equal influence 
of two elements needs to be considered. The study showed that these coordinates describe the exact 

placement of the crack ends relative to the centre of each hole. The crack ends in both holes are 

symmetrically positioned relative to their centres, which allows for accounting for the uniform distribution 

of stresses and deformations around the holes. 

The implementation of measures such as gradual reduction or adjustment of cracks positioned along 

the Ox axis implies that the cracks run parallel to this axis and align with it in the coordinate system. The 
cracks are situated strictly along the Ox axis, making their distribution uniform and linear. It was also 

established that implementing such measures means that the cracks do not deviate from the Ox axis and 

remain precisely on this line. This ensures that the cracks have a consistent direction and alignment along 
the Ox axis, which simplifies the analysis and modelling of their impact on the distribution of stresses and 

deformations in the material. 

 

CONCLUSIONS 

The result of the study was to determine the value of the critical force at point A and the spread of the sides 

at point B. The reason is that conformal mapping functions do not exist in the literature for such problems. 

Here, for the first time, the stress state of an endless strip with linear cracks is solved. The value of the 
stresses at the inner and outer points of the cross-section is calculated using the density factor, the load 

distribution at point A, and the spread at point B. As a result, the area for solving such problems becomes 
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much more complicated. The study confirmed that the elliptical holes within the material are not subjected 

to external stress. This means that the internal elliptical shapes do not affect the distribution of external 

loads and stresses in the material. 

The study determined that elliptical holes and linear cracks significantly affect the stress distribution 

in an infinite plate with complex geometry. The configuration of holes and cracks changes the stress 
concentration, which can lead to localised stress concentrations and potential fracture. It has been 

established that the application of this approach implies that the presence of these holes in the material does 

not exert additional influence on the distribution of external loads and stresses in the area under 
consideration. This means that, despite the presence of elliptical holes, their shape and placement do not 

alter the distribution of external forces and stresses, thereby simplifying the analysis and calculation of the 

material's load. The study also confirmed that adherence to standards indicates that the elliptical holes 
themselves do not experience external loads. This implies that the internal boundaries of these holes do not 

affect the distribution of external forces. 
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