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Keywords: Explanations (LIME) technique is utilized to interpret the CNN model
k;f}{piﬁgalli);e used to classify 17 classes of ECG arrhythmias. The CNN model was
Classyiﬁcation developed using a five-stage framework. The study uses the MIT-BIH
Electrocardiography Arrhythmia database to evaluate the performance of the CNN model.
Convolutional Neural Network Results indicate that the model was able to accomplish precision of
DOI- 97.00%, recall of 97.00%, F1-score of 97.00%, and overall accuracy of
10.24191/mij.v6i2.9317 99.00%. In addition, the LIME technique provides local explanations

that help in the understanding of the decision-making process of the
CNN model in classifying the 17 classes of ECG arrhythmias.

1. INTRODUCTION

For decades, cardiovascular diseases (CVDs) have been the leading cause of death worldwide. According
to the World Heart Report 2023, an estimated 20.5 million people died from CVDs in 2021 alone (Di Cesare
et al., 2023). More specifically, the ischemic heart disease was the primary cause of premature death in 146
countries for men and in 98 countries for women. The modifiable risk factors that contributed to CVD
deaths in 2021 included (1) elevated low-density lipoprotein (LDL) cholesterol; (2) high fasting plasma
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glucose; (3) air pollution; (4) high body-mass index; (5) tobacco use; (6) low physical activity; and (7)
raised blood pressure.

The prevalence of cardiovascular diseases highlights the need for early detection of heart
abnormalities through the electrocardiogram. The electrocardiogram (ECG or EKG) records the electrical
signals of the heart by placing electrodes on specific areas of the chest, arms, and legs. Conventionally,
ECG signals are recorded using an analog ECG machine. The ECG test results can assist not only in the
diagnosis of irregular heartbeats known as arrhythmias but also help to reduce the risk of severe heart
complications and save lives as well. However, ECG interpretations have limitations: it is visually
inspected, time-consuming, requires special expertise, and is prone to human error (Ojha et al., 2024).

More recently, with the introduction of artificial intelligence (AI) technology, modern ECG devices
have started to utilize Al algorithms, including machine learning (ML) and deep learning (DL) to improve
the detection and classification of arrhythmia. The ML and DL algorithms offer numerous advantages. For
instance, ML algorithms can continuously monitor patients in real-time by using wearable devices and can
alert clinicians when significant changes occur in ECG signals (Katal et al., 2023). In addition, by helping
to eliminate noise and artefacts such as baseline wander, powerline interference, and electrode contact from
the ECG signals, DL algorithms can improve feature extraction and reduce false alarms in clinical settings
(Hou et al., 2023). DL algorithms also effectively identify the intricate patterns and distinguishing
characteristics related to various types of arrhythmias through large-scale and diverse ECG datasets, which
can lead to improve accuracy of arrhythmia classification (Narotamo et al., 2024).

The study uses a CNN model to classify 17 types of ECG arrhythmia. In addition, the study adopted
the LIME technique to enhance the interpretability of the CNN model. This paper is arranged in the
following manner. Section 2 presents related works on ECG arrhythmia classification approaches and XAl
techniques. Section 3 provides the methodology adopted in this study. Section 4 discusses and evaluates
the experimental outcomes of this work. Section 5 concludes the paper.

2. RELATED WORKS

Researchers have developed and adopted multiple ML and DL approaches to enhance the classification of
ECG arrhythmias (Khairuddin et al., 2024; Khairuddin & Ku Azir, 2021). However, these approaches often
lack clinical interpretability which poses challenges for decision-making in healthcare. More recent studies
have emphasized on the applications of explainable artificial intelligence (XAI) techniques to enhance the
interpretability of the ML and DL techniques. These studies utilized different DL techniques to classify
ECG arrhythmias as well as adopted several XAl techniques to interpret the DL models.

2.1 Deep Learning Models

Several studies have explored CNN model for ECG arrhythmia classification. For example, Azzem
and Harrag (2023) proposed a CNN to classify five arrhythmias, attaining an accuracy of 0.903 with
corresponding precision, recall, F1-score, and area under the curve (AUC) of 0.74, 0.76, 0.75, and 0.93,
respectively. Another study by (Anand et al., 2022) developed an ST-CNN-GAP-5 model with a global
average pooling layer. The model was able to accomplish 95.80% accuracy and an AUC of 99.46%.

The recent study by (Salvi, 2024) introduced the CNN-Bidirectional Gated Recurrent Unit (CNN-
BiGRU) model to classify five arrhythmia types. The CNN-BiGRU model was able to achieve accuracy of
94.44%, precision of 94.33%, recall of 94.36%, and F1-score of 94.35%. The previous work by (Ojha et
al., 2024) used the ST-CNN-5 model to classify 5 different types of arrhythmias. The performance of the
model reached an accuracy of 0.891, along with precision of 0.798, recall of 0.693 and specificity of 0.934.
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2.2 XAI Techniques for DL Models

Different XAl techniques such as SHapley Additive exPlanations (SHAP), LIME, and Gradient-
weighted Class Activation Mapping (GradCAM) have been employed to interpret these deep learning
models. For instance, the work by (Sathi et al., 2024) used both SHAP and LIME with a histogram gradient
boosting (Hist-GB) classifier to identify key ECG fiducial features relevant for diagnosing arrhythmia,
ischemia and healthy classes. The study by (Ojha et al., 2024) compared SHAP, LIME, and GradCAM for
model interpretation and found SHAP to be the most effective in emphasizing relevant ECG features.
Meanwhile, the research by (Azzem & Harrag, 2023) used GradCAM to visualize influential ECG regions.
Another study by (Salvi, 2024) applied LIME to highlight the important regions of the ECG waves.

Overall, prior works have demonstrated that integrating XAI with DL models can enhance
interpretability in ECG arrhythmia classification. However, most studies focus on a limited number of
arrhythmia classes. This study addresses this gap by integrating LIME technique with a CNN to classify 17
types of arrhythmias, providing both high predictive accuracy and interpretable local explanations. The
LIME is chosen due to its model-agnostic property, which enables the interpretation of CNN predictions.

3. METHODOLOGY

In this study, the interpretable ECG classification model is developed using a five-stage framework (Fig.
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Fig. 1. Five stages of the proposed framework

3.1 ECG Dataset

The MIT-BIH Arrhythmia Database is utilized in this study to develop and evaluate the CNN model
for classifying the 17 classes of ECG arrhythmia. The 48 ECG signals were obtained from the PhysioNet
repository. Each ECG signal is 30 minutes long, sampled at 360 Hz. However, random selection was
applied to extract 10-second fragments (3600 samples) from the ECG signals for the purpose of analysis.
This study utilized only the ECG signals derived from the MLII lead.

3.2 Feature Extraction

ECG feature extraction included both morphological and statistical features. Seven morphological
features were calculated from the positions of the R-peaks. An additional nine wavelet-based statistical
features were extracted by using the wavelet decomposition process with the Daubechies 1 (Db1) wavelet.
The following Table 1 lists the extracted features and their descriptions.
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Table 1. Morphological and statistical features extracted

Name Description
AvgHR The average heart rate of the RR intervals.
Mean_RR Mean of the RR intervals.
Morphological rmssd Root-mean-square distance between successive RR intervals.
features NumR The total count of R-peaks with differences exceeding a 30-millisecond threshold.
sdRR Standard deviation calculated from the RR intervals.
sdHR Standard deviation calculated from the heart rate.
pse The power spectral entropy of the R-peaks.
Mean The mean of the 2™ detail coefficient.
STD The standard deviation of the 2™ detail coefficient.
SK The skewness of the 2™ detail coefficient.
Kurt The kurtosis of the 2™ detail coefficient.
Statistical features RMS The root mean square of the 2™ detail coefficient.
MR Average ratio computed between the 1 and 2™ detail coefficient.
Max The highest value of the 2™ detail coefficient.
Min The lowest value of the 2™ detail coefficient.
En The energy of the 2™ detail coefficient.

3.3 Feature Selection

A univariate statistical test (SelectKBest with ANOVA F-test, f_classif) identified the most relevant
features. A total of 10 top-ranked features were chosen based on F-scores. The feature selection stage helped
to reduce the dimensionality of the feature set to improve the model training. Fig. 2 presents the top 10
selected features based on the ANOVA F-test. Based on Fig. 2, Kurt has the highest F-score, whereas Mean

has the lowest.

Top 10 Selected Features Based on ANOVA F-test
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Fig. 2. The top 10 selected features based on the F-score
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3.4 Convolutional Neural Network Model

The proposed arrhythmia classification model is a one-dimensional CNN (1D-CNN) for sequential
ECG input (Fig. 3). The following section provides a brief overview of the layers used in the CNN model.
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Fig. 3. The architecture framework

3.4.1Input Layer

This input layer accepted the ECG input with a shape corresponding to the 10 selected features from
the SelectKBest method. The ECG input was reshaped as a 1-dimensional sequence.

3.4.2 First Convolutional Block

A Conv1D layer with 64 filters and a kernel size of 3 were employed through the rectified linear unit
(ReLU) activation function to extract local patterns from the input sequence. This was followed by a
MaxPooling 1D layer with a pool size of 2. This helped to reduce the spatial dimension as well as mitigate

overfitting.

3.4.3Second Convolutional Block

An additional Conv1D layer with 128 filters and a kernel size of 3 was incorporated to capture more
complex and abstract features. This was followed again by another MaxPooling1D layer with a pool size
of 2 for further dimensionality reduction.

3.4.4Flattening Layer

The output of the convolutional layers was flattened into a one-dimensional vector to prepare it for
the dense layers.

3.4.5Fully Connected Layer

A dense layer with 64 neurons and ReLU activation function were used to learn high level
representations. A dropout rate of 0.5 was incorporated to mitigate overfitting by randomly deactivating
neurons during training.

3.4.6 Output Layer

The output layer was included with a softmax activation function to enable multiclass classification
of 17 classes of ECG arrhythmia.
The CNN model was set up for training with the following hyperparameter: (1) Adam optimizer; (2)

batch size of 64; and (3) epochs of 200. The loss function was the categorical cross entropy. Early stopping
was employed with a patience of 5 epochs to stop the model training when the validation loss no longer

improved.
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3.5 Performance Metrics

Four performance metrics were employed to evaluate the proposed ECG arrhythmia classification
model. These performance metrics included: (1) accuracy; (2) precision; (3) recall; and (4) F1-score. TP,
TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. The
section below briefly explains the four-performance metrics.

3.5.1 Accuracy

As shown in equation 1, accuracy is the ratio between the number of correct predictions over the total

predictions.

Accuracy = (TP + TN) / (TP + TN + FN + FP) (1)

3.5.2 Precision
Precision indicates the ratio of correctly predicted positive instances to the total predicted positives by
the CNN model.

Precision = TP / (TP + FP) (2)

3.5.3Recall

Recall referred to the ratio of true positives to the total number of actual positive instances.

Recall =TP /(TP + FN) 3)

3.5.4F1-score

F1-score is a metric that combines precision and recall using their harmonic mean.

F1-score = 2 x ((Precision x Recall) / Precision + Recall) 4)

3.6 Model Explanation

In this study, LIME was used for local explanation of the CNN model. This technique focused on
explaining the prediction made by the CNN model for a specific data point (instance), instead of explaining
the model’s behavior globally. This method weighed each of the features that represented their contribution
to the model prediction for the specific single instance.

4. RESULTS AND DISCUSSION

Experiments were conducted in Jupyter Notebook with Python version 3.12.7 based on the following PC
specifications: (1) AMD Ryzen 9 9900X (2) 32 GB of DDR5 RAM (3) RTX 4070 GPU and (4) Windows
11. The effectiveness of the CNN model in categorizing the 17 classes of arrhythmias as well as the
interpretation of the CNN model by using the LIME technique are presented and discussed in the section
below.

Before the training of the CNN model, the ECG dataset was allocated into training (80%) and testing
(20%) sets. More specifically, the 4,743 samples were divided into 3,794 training sets (80%) and 949 testing
sets (20%). Before the dataset was split, the preprocessing techniques were applied to the ECG dataset.
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4.1 Data Pre-processing

This subsection explains the data preprocessing processes adopted in the study. The data
preprocessing helped to improve the data quality as well as the performance of the CNN model. The data
preprocessing process included the following: (1) data imputation; (2) data balancing; and (3) data
normalization.

4.1.1 Data imputation

The data imputation involved replacing the missing values of numeric columns in the ECG dataset.
The missing values in this dataset were imputed with the mean of the respective column values.

4.1.2 Data balancing

The ECG dataset exhibits class imbalance where certain classes contain significantly more samples
than others. Specifically, the NSR class has the highest number of samples, whereas the VFL class has the
lowest number of samples. Handling the class imbalance in dataset is important to avoid biased and
inaccurate model predictions.

The class imbalance in the ECG dataset was addressed by adopting the random over sampling (ROS)
technique. This technique selected the existing samples from the minority class randomly and duplicated
them to balance out the dataset.

4.1.3 Data Normalization

After balancing the dataset, the dataset also needed to be normalized. The robust scaler function was
used to normalize the 16 features in the dataset. The robust scaler function was selected due to its robustness
to outliers presented in the dataset. Equation 5 below shows the expression for the robust scaler function,
where Q1 is the first quartile and Q3 is the third quartile.

X = (xi- Qi(x)) / (Q3(x) — Qi(x)) )

4.2 Classification of Arrhythmia

The performance of the CNN model was assessed by using performance metrics that consisted of
precision, recall, and F1-score. The results of each arrhythmia classes are summarized in Table 2. The
support in Table 2 refers to the total number of instances in each class.

Table 2. Performance metrics for each arrhythmia class.

Class Precision Recall F1-score Support
NSR 0.94 0.82 0.87 56
APB 0.95 0.98 0.96 56
AFL 1.00 1.00 1.00 56
AFIB 0.93 0.95 0.94 56
SVTA 1.00 1.00 1.00 56
WPW 1.00 1.00 1.00 56
PVvC 0.89 0.86 0.87 56
BG 0.93 0.96 0.95 56
TG 0.98 1.00 0.99 56
VT 1.00 1.00 1.00 56
IVR 1.00 1.00 1.00 56
VFL 1.00 1.00 1.00 56
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Fusion 0.97 1.00 0.98 56
LBBB 0.97 1.00 0.98 56
RBBB 0.98 0.96 0.97 56
SDHB 1.00 1.00 1.00 56
PR 1.00 1.00 1.00 56

Based on the results in Table 2, the CNN model was able to predict accurately classes AFL, SVTA,
WPW, VT, IVR, VFL, SDHB, and PR, with precision, recall, F1-score of 1.00, 1.00, and 1.00, respectively.
In the case of the accuracy, the CNN model was able to achieve accuracy of 97.00%. Table 3 shows the
macro and weighted average of precision, recall, and F1-score for the CNN model.

Table 3. The macro and weighted average of precision, recall, and F1-score.

Precision Recall Fl-score Support
Macro average 0.97 0.97 0.97 949
Weighted average 0.97 0.97 0.97 949

The results in Table 3 indicate that both the macro and weighted average of precision, recall and F1-
score was 0.97. Fig. 4 shows the training and validation loss plot graph. The x-axis represented the number
of epochs (iterations through the entire training dataset), whereas the y-axis represented the loss, which was
a measure of error.

Training & Validation Loss

—— Training loss
validation loss

T
0 10 20 30 40 50 60 70

Fig. 4. The loss performance of the model

Both training and validation losses decreased consistently and converged around the same low values.
The validation loss did not diverge while training loss decreased, indicating there was no significant
overfitting and generalized well to unseen data. Following this, Fig. 5 presents the training and validation
accuracy plot graph during the training of the CNN model. The x-axis represented the number epochs,
whereas the y-axis represented the accuracy.

Training & Validation Accuracy
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Fig. 5. The accuracy performance of the model

As shown in Fig. 5, there was a rapid increase in both training and validation accuracy during the early
epochs (0-10). In the middle epochs (10-30), the validation accuracy was slightly higher. In the later epochs
(30-70), both training and validation accuracy plateau close to 1.0. There was very little difference between
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the training and validation accuracy, which suggested no significant overfitting as well as the model had
good generalization on unseen data.

Accordingly, the following Fig. 6 presents the 17x17 confusion matrix representing the classification
outcomes derived from the 17 classes of arrhythmias. The analysis of the confusion matrix suggested that
the CNN model predicted accurately the AFL, SVTA, WPW, BG, TG, VT, IVR, VFL, Fusion, LBBB,
RBBB, SDHB, and PR classes. However, the CNN model predicted NSR, APB, AFIB, and PVC classes
were less accurate.
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Fig. 6. The confusion matrix for the CNN model

4.3 Model Explanation

This section provides the results associated with the CNN local interpretations by using the LIME
technique. The instance 180 of class 8 and instance 400 of class 9 were chosen randomly for the local
explanations. The LIME technique was able to present features that contributed the most to the target
outcome of class 8 and 9, respectively.
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Fig. 7. Local interpretability prediction for instance 180 of class 8

The three graphs that showed each of the essential information about the ECG features and
classification classes are presented in Fig. 7. The left graph shows that the instance 180 in the dataset
showed the confidence interval indicating that this instance was 97% belonged to class 8, whereas only 3%
stated that this instance belonged to class 7. The center graph showed the feature importance scores on the
instance 180 with Mean_RR had 7% feature importance score, followed by En with 5%, and Max with 5%.
The RMS had the lowest feature importance score. The right graph showed the 10 features and their
respective values. The features highlighted in peach color contributed toward class 8.

LIME Explanation for Predicted Class: 8
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Fig. 8. The range of local interpretability prediction for instance 180 of class 8

Fig. 8 shows the bar plot that indicated the range of local interpretability predictions, on instance 180
for class 8. More specifically, the Mean_RR feature lied within the range —0.01 < Mean_RR <= 0.56,
the En feature was greater than 0.47, and Max feature lied within the range 0.00 < Max <= 0.60. The
RMS feature, which had the lowest feature importance score lied within the range —0.47 < RMS <=
0.00.
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Fig. 9. Local interpretability prediction for instance 400 of class 9

Fig. 9 presents the local interpretability prediction, for instance 400. The left graph indicated that the
instance 400 in the dataset showed the confidence interval stating that this instance was 97% belonged to
class 9, whereas only 3% indicated this instance belonged to class 7. The center graph showed the feature
importance scores on the instance 400. More specifically, the Mean had 1% feature importance score,
followed by pse with 1%, and Min with 1%. The Kurt had the lowest feature importance score. In the right
graph, the features highlighted in purple contributed toward class 9, whereas features highlighted in teal
color contributed toward class not 9.
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Fig. 10. The range of local interpretability prediction for instance 400 of class 9

The bar plot that indicated the range of local interpretability predictions, for instance 400 for class 9
is provided in Fig. 10. More specifically, the Mean feature was less than or equal to -0.61, the pse feature
lies within the range —0.44 < pse <= 0.00, and Min feature was greater than 0.48. The Kurt feature,
which had the lowest feature of importance, score was greater than 0.55.

Although the findings presented in Fig. 11 suggested that the LIME technique can provide local
interpretability prediction, this technique did not offer consistency in terms of providing the same
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confidence interval and feature importance scores for similar instance. For instance, after second execution
of the LIME technique on CNN model, the confidence interval indicated that the instance 400 was 99%
belonged to class 9, whereas only 1% indicated this instance belonged to class 7. In contrast to the feature
importance scores in Fig. 9, the RMS feature contributed to class not 9, while the Mean and Kurt features
contributed to class 9. However, both findings in Fig. 9 and Fig. 11 indicated that the instance 400 belonged
to class 9.

q
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Fig. 11. Local interpretability prediction for instance 400 of class 9 (after second execution)

LIME Explanation for Predicted Class: 9
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Fig. 12. The range of local interpretability prediction for instance 400 of class 9 (after second execution)

Although the LIME technique can be used to interpret the ECG classification model, clinical experts
are still needed to evaluate the global and local explanations generated by this technique. This is because
as clinical experts, they can identify potential biases or inconsistencies that may lead to harmful decisions
as well as in ensuring that the explanations are aligned with the real-world understanding of the ECG
arrhythmia.
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5. CONCLUSION

This study attempted to integrate the LIME technique with the CNN model for classifying 17 types of ECG
arrhythmia. The ECG classification model consisted of five stages that included pre-processing, feature
extraction, feature selection, classification and model explanation. Findings of the study indicated that the
CNN model was able to attain precision, recall, F1-score of 97.00% with an overall accuracy of 99.00%.
In addition, the findings of the study revealed that LIME technique managed to provide local explanation
by determining which of the 10 features contributed to the class prediction of the specific instance. The
integration of LIME technique in the study has contributed to a more interpretable CNN model, which
initially possessed low interpretability in its decision-making process. Nevertheless, this study was limited
by the absence of expert validation. For future research, it is recommended that researchers not only adopt
the other alternative XAl approaches including SHAP or Grad-CAM but also validate their results by using
clinical experts.
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