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 Deep learning models have demonstrated strong performance in 

electrocardiogram (ECG) arrhythmia classification. However, their lack 

of interpretability limits clinical trust and adoption. By adopting an 

explainable artificial intelligence (XAI) technique, this study aims to 

enhance the interpretability of a convolutional neural network (CNN) 

model. More specifically, the Local Interpretable Model-Agnostic 

Explanations (LIME) technique is utilized to interpret the CNN model 

used to classify 17 classes of ECG arrhythmias. The CNN model was 

developed using a five-stage framework. The study uses the MIT-BIH 

Arrhythmia database to evaluate the performance of the CNN model. 

Results indicate that the model was able to accomplish precision of 

97.00%, recall of 97.00%, F1-score of 97.00%, and overall accuracy of 

99.00%. In addition, the LIME technique provides local explanations 

that help in the understanding of the decision-making process of the 

CNN model in classifying the 17 classes of ECG arrhythmias.  
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1. INTRODUCTION 

For decades, cardiovascular diseases (CVDs) have been the leading cause of death worldwide. According 

to the World Heart Report 2023, an estimated 20.5 million people died from CVDs in 2021 alone (Di Cesare 

et al., 2023). More specifically, the ischemic heart disease was the primary cause of premature death in 146 

countries for men and in 98 countries for women. The modifiable risk factors that contributed to CVD 

deaths in 2021 included (1) elevated low-density lipoprotein (LDL) cholesterol; (2) high fasting plasma 
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glucose; (3) air pollution; (4) high body-mass index; (5) tobacco use; (6) low physical activity; and (7) 

raised blood pressure.  

The prevalence of cardiovascular diseases highlights the need for early detection of heart 

abnormalities through the electrocardiogram. The electrocardiogram (ECG or EKG) records the electrical 

signals of the heart by placing electrodes on specific areas of the chest, arms, and legs. Conventionally, 

ECG signals are recorded using an analog ECG machine. The ECG test results can assist not only in the 

diagnosis of irregular heartbeats known as arrhythmias but also help to reduce the risk of severe heart 

complications and save lives as well. However, ECG interpretations have limitations: it is visually 

inspected, time-consuming, requires special expertise, and is prone to human error (Ojha et al., 2024).   

More recently, with the introduction of artificial intelligence (AI) technology, modern ECG devices 

have started to utilize AI algorithms, including machine learning (ML) and deep learning (DL) to improve 

the detection and classification of arrhythmia. The ML and DL algorithms offer numerous advantages. For 

instance, ML algorithms can continuously monitor patients in real-time by using wearable devices and can 

alert clinicians when significant changes occur in ECG signals (Katal et al., 2023). In addition, by helping 

to eliminate noise and artefacts such as baseline wander, powerline interference, and electrode contact from 

the ECG signals, DL algorithms can improve feature extraction and reduce false alarms in clinical settings 

(Hou et al., 2023). DL algorithms also effectively identify the intricate patterns and distinguishing 

characteristics related to various types of arrhythmias through large-scale and diverse ECG datasets, which 

can lead to improve accuracy of arrhythmia classification (Narotamo et al., 2024).  

The study uses a CNN model to classify 17 types of ECG arrhythmia. In addition, the study adopted 

the LIME technique to enhance the interpretability of the CNN model. This paper is arranged in the 

following manner. Section 2 presents related works on ECG arrhythmia classification approaches and XAI 

techniques. Section 3 provides the methodology adopted in this study. Section 4 discusses and evaluates 

the experimental outcomes of this work. Section 5 concludes the paper.  

2. RELATED WORKS 

Researchers have developed and adopted multiple ML and DL approaches to enhance the classification of 

ECG arrhythmias (Khairuddin et al., 2024; Khairuddin & Ku Azir, 2021). However, these approaches often 

lack clinical interpretability which poses challenges for decision-making in healthcare. More recent studies 

have emphasized on the applications of explainable artificial intelligence (XAI) techniques to enhance the 

interpretability of the ML and DL techniques. These studies utilized different DL techniques to classify 

ECG arrhythmias as well as adopted several XAI techniques to interpret the DL models.  

2.1 Deep Learning Models  

Several studies have explored CNN model for ECG arrhythmia classification. For example, Azzem 

and Harrag (2023) proposed a CNN to classify five arrhythmias, attaining an accuracy of 0.903 with 

corresponding precision, recall, F1-score, and area under the curve (AUC) of 0.74, 0.76, 0.75, and 0.93, 

respectively. Another study by (Anand et al., 2022) developed an ST-CNN-GAP-5 model with a global 

average pooling layer. The model was able to accomplish 95.80% accuracy and an AUC of 99.46%. 

The recent study by (Salvi, 2024) introduced the CNN-Bidirectional Gated Recurrent Unit (CNN-

BiGRU) model to classify five arrhythmia types. The CNN-BiGRU model was able to achieve accuracy of 

94.44%, precision of 94.33%, recall of 94.36%, and F1-score of 94.35%. The previous work by (Ojha et 

al., 2024) used the ST-CNN-5 model to classify 5 different types of arrhythmias. The performance of the 

model reached an accuracy of 0.891, along with precision of 0.798, recall of 0.693 and specificity of 0.934. 



249 Mohd Khairuddin et al. / Mathematical Sciences and Informatics Journal (2025) Vol. 6, No. 2 

https://doi.org/10.24191/mij.v6i2.9317

 

 ©Authors, 2025 

2.2 XAI Techniques for DL Models 

Different XAI techniques such as SHapley Additive exPlanations (SHAP), LIME, and Gradient-

weighted Class Activation Mapping (GradCAM) have been employed to interpret these deep learning 

models. For instance, the work by (Sathi et al., 2024) used both SHAP and LIME with a histogram gradient 

boosting (Hist-GB) classifier to identify key ECG fiducial features relevant for diagnosing arrhythmia, 

ischemia and healthy classes. The study by (Ojha et al., 2024) compared SHAP, LIME, and GradCAM for 

model interpretation and found SHAP to be the most effective in emphasizing relevant ECG features. 

Meanwhile, the research by (Azzem & Harrag, 2023) used GradCAM to visualize influential ECG regions. 

Another study by (Salvi, 2024) applied LIME to highlight the important regions of the ECG waves. 

Overall, prior works have demonstrated that integrating XAI with DL models can enhance 

interpretability in ECG arrhythmia classification. However, most studies focus on a limited number of 

arrhythmia classes. This study addresses this gap by integrating LIME technique with a CNN to classify 17 

types of arrhythmias, providing both high predictive accuracy and interpretable local explanations. The 

LIME is chosen due to its model-agnostic property, which enables the interpretation of CNN predictions. 

3. METHODOLOGY 

In this study, the interpretable ECG classification model is developed using a five-stage framework (Fig. 

1).  

 

Fig. 1. Five stages of the proposed framework 

3.1 ECG Dataset 

The MIT-BIH Arrhythmia Database is utilized in this study to develop and evaluate the CNN model 

for classifying the 17 classes of ECG arrhythmia. The 48 ECG signals were obtained from the PhysioNet 

repository. Each ECG signal is 30 minutes long, sampled at 360 Hz. However, random selection was 

applied to extract 10-second fragments (3600 samples) from the ECG signals for the purpose of analysis. 

This study utilized only the ECG signals derived from the MLII lead.  

3.2 Feature Extraction 

ECG feature extraction included both morphological and statistical features. Seven morphological 

features were calculated from the positions of the R-peaks. An additional nine wavelet-based statistical 

features were extracted by using the wavelet decomposition process with the Daubechies 1 (Db1) wavelet. 

The following Table 1 lists the extracted features and their descriptions.  
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Table 1. Morphological and statistical features extracted 

Morphological 
features 

Name Description 

AvgHR The average heart rate of the RR intervals. 

Mean_RR Mean of the RR intervals. 

rmssd Root-mean-square distance between successive RR intervals. 

NumR The total count of R-peaks with differences exceeding a 30-millisecond threshold.  

sdRR Standard deviation calculated from the RR intervals. 

sdHR Standard deviation calculated from the heart rate. 

pse The power spectral entropy of the R-peaks. 

Statistical features 

Mean The mean of the 2nd detail coefficient. 

STD The standard deviation of the 2nd detail coefficient.  

SK The skewness of the 2nd detail coefficient. 

Kurt The kurtosis of the 2nd detail coefficient. 

RMS The root mean square of the 2nd detail coefficient. 

MR Average ratio computed between the 1st and 2nd detail coefficient. 

Max The highest value of the 2nd detail coefficient. 

Min The lowest value of the 2nd detail coefficient. 

En The energy of the 2nd detail coefficient.  

3.3 Feature Selection 

A univariate statistical test (SelectKBest with ANOVA F-test, 𝑓_𝑐𝑙𝑎𝑠𝑠𝑖𝑓) identified the most relevant 

features. A total of 10 top-ranked features were chosen based on F-scores. The feature selection stage helped 

to reduce the dimensionality of the feature set to improve the model training. Fig. 2 presents the top 10 

selected features based on the ANOVA F-test. Based on Fig. 2, Kurt has the highest F-score, whereas Mean 

has the lowest. 

 

Fig. 2. The top 10 selected features based on the F-score 
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3.4 Convolutional Neural Network Model 

The proposed arrhythmia classification model is a one-dimensional CNN (1D-CNN) for sequential 

ECG input (Fig. 3). The following section provides a brief overview of the layers used in the CNN model. 

 

Fig. 3. The architecture framework 

3.4.1 Input Layer 

This input layer accepted the ECG input with a shape corresponding to the 10 selected features from 

the SelectKBest method. The ECG input was reshaped as a 1-dimensional sequence.  

3.4.2 First Convolutional Block 

A Conv1D layer with 64 filters and a kernel size of 3 were employed through the rectified linear unit 

(ReLU) activation function to extract local patterns from the input sequence. This was followed by a 

MaxPooling1D layer with a pool size of 2. This helped to reduce the spatial dimension as well as mitigate 

overfitting.  

3.4.3 Second Convolutional Block 

An additional Conv1D layer with 128 filters and a kernel size of 3 was incorporated to capture more 

complex and abstract features. This was followed again by another MaxPooling1D layer with a pool size 

of 2 for further dimensionality reduction.   

3.4.4 Flattening Layer 

The output of the convolutional layers was flattened into a one-dimensional vector to prepare it for 

the dense layers.  

3.4.5 Fully Connected Layer 

A dense layer with 64 neurons and ReLU activation function were used to learn high level 

representations. A dropout rate of 0.5 was incorporated to mitigate overfitting by randomly deactivating 

neurons during training. 

3.4.6 Output Layer 

The output layer was included with a softmax activation function to enable multiclass classification 

of 17 classes of ECG arrhythmia. 

The CNN model was set up for training with the following hyperparameter: (1) Adam optimizer; (2) 

batch size of 64; and (3) epochs of 200. The loss function was the categorical cross entropy. Early stopping 

was employed with a patience of 5 epochs to stop the model training when the validation loss no longer 

improved.  
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3.5 Performance Metrics 

Four performance metrics were employed to evaluate the proposed ECG arrhythmia classification 

model. These performance metrics included: (1) accuracy; (2) precision; (3) recall; and (4) F1-score. TP, 

TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. The 

section below briefly explains the four-performance metrics. 

3.5.1 Accuracy 

As shown in equation 1, accuracy is the ratio between the number of correct predictions over the total 

predictions. 

 

 Accuracy = (TP + TN) / (TP + TN + FN + FP) (1) 

3.5.2 Precision 

Precision indicates the ratio of correctly predicted positive instances to the total predicted positives by 

the CNN model. 

 

 Precision = TP / (TP + FP) (2) 

3.5.3 Recall 

Recall referred to the ratio of true positives to the total number of actual positive instances. 

 

 Recall = TP / (TP + FN) (3) 

3.5.4 F1-score 

F1-score is a metric that combines precision and recall using their harmonic mean.  

 

 F1-score = 2 x ((Precision x Recall) / Precision + Recall) (4) 

3.6 Model Explanation 

In this study, LIME was used for local explanation of the CNN model. This technique focused on 

explaining the prediction made by the CNN model for a specific data point (instance), instead of explaining 

the model’s behavior globally. This method weighed each of the features that represented their contribution 

to the model prediction for the specific single instance.  

4. RESULTS AND DISCUSSION 

Experiments were conducted in Jupyter Notebook with Python version 3.12.7 based on the following PC 

specifications: (1) AMD Ryzen 9 9900X (2) 32 GB of DDR5 RAM (3) RTX 4070 GPU and (4) Windows 

11. The effectiveness of the CNN model in categorizing the 17 classes of arrhythmias as well as the 

interpretation of the CNN model by using the LIME technique are presented and discussed in the section 

below.  

Before the training of the CNN model, the ECG dataset was allocated into training (80%) and testing 

(20%) sets. More specifically, the 4,743 samples were divided into 3,794 training sets (80%) and 949 testing 

sets (20%). Before the dataset was split, the preprocessing techniques were applied to the ECG dataset. 
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4.1 Data Pre-processing 

This subsection explains the data preprocessing processes adopted in the study. The data 

preprocessing helped to improve the data quality as well as the performance of the CNN model. The data 

preprocessing process included the following: (1) data imputation; (2) data balancing; and (3) data 

normalization. 

4.1.1 Data imputation 

The data imputation involved replacing the missing values of numeric columns in the ECG dataset. 

The missing values in this dataset were imputed with the mean of the respective column values. 

4.1.2 Data balancing 

The ECG dataset exhibits class imbalance where certain classes contain significantly more samples 

than others. Specifically, the NSR class has the highest number of samples, whereas the VFL class has the 

lowest number of samples. Handling the class imbalance in dataset is important to avoid biased and 

inaccurate model predictions.  

The class imbalance in the ECG dataset was addressed by adopting the random over sampling (ROS) 

technique. This technique selected the existing samples from the minority class randomly and duplicated 

them to balance out the dataset. 

4.1.3 Data Normalization  

After balancing the dataset, the dataset also needed to be normalized. The robust scaler function was 

used to normalize the 16 features in the dataset. The robust scaler function was selected due to its robustness 

to outliers presented in the dataset. Equation 5 below shows the expression for the robust scaler function, 

where Q1 is the first quartile and Q3 is the third quartile. 

 

 X = (xi - Q1(x)) / (Q3(x) – Q1(x)) (5) 

4.2 Classification of Arrhythmia 

The performance of the CNN model was assessed by using performance metrics that consisted of 

precision, recall, and F1-score. The results of each arrhythmia classes are summarized in Table 2. The 

support in Table 2 refers to the total number of instances in each class. 

Table 2. Performance metrics for each arrhythmia class. 

Class Precision Recall F1-score Support 

NSR 0.94 0.82 0.87 56 

APB 0.95 0.98 0.96 56 

AFL 1.00 1.00 1.00 56 

AFIB 0.93 0.95 0.94 56 

SVTA 1.00 1.00 1.00 56 

WPW 1.00 1.00 1.00 56 

PVC 0.89 0.86 0.87 56 

BG 0.93 0.96 0.95 56 

TG 0.98 1.00 0.99 56 

VT 1.00 1.00 1.00 56 

IVR 1.00 1.00 1.00 56 

VFL 1.00 1.00 1.00 56 



254 Mohd Khairuddin et al. / Mathematical Sciences and Informatics Journal (2025) Vol. 6, No. 2 

https://doi.org/10.24191/mij.v6i2.9317

 

 ©Authors, 2025 

Fusion 0.97 1.00 0.98 56 

LBBB 0.97 1.00 0.98 56 

RBBB 0.98 0.96 0.97 56 

SDHB 1.00 1.00 1.00 56 

PR 1.00 1.00 1.00 56 

 

Based on the results in Table 2, the CNN model was able to predict accurately classes AFL, SVTA, 

WPW, VT, IVR, VFL, SDHB, and PR, with precision, recall, F1-score of 1.00, 1.00, and 1.00, respectively. 

In the case of the accuracy, the CNN model was able to achieve accuracy of 97.00%. Table 3 shows the 

macro and weighted average of precision, recall, and F1-score for the CNN model.  

Table 3. The macro and weighted average of precision, recall, and F1-score. 

  

 

The results in Table 3 indicate that both the macro and weighted average of precision, recall and F1-

score was 0.97. Fig. 4 shows the training and validation loss plot graph. The x-axis represented the number 

of epochs (iterations through the entire training dataset), whereas the y-axis represented the loss, which was 

a measure of error. 

 

Fig. 4. The loss performance of the model 

Both training and validation losses decreased consistently and converged around the same low values. 

The validation loss did not diverge while training loss decreased, indicating there was no significant 

overfitting and generalized well to unseen data. Following this, Fig. 5 presents the training and validation 

accuracy plot graph during the training of the CNN model. The x-axis represented the number epochs, 

whereas the y-axis represented the accuracy.  

 

Fig. 5. The accuracy performance of the model 

As shown in Fig. 5, there was a rapid increase in both training and validation accuracy during the early 

epochs (0-10). In the middle epochs (10-30), the validation accuracy was slightly higher. In the later epochs 

(30-70), both training and validation accuracy plateau close to 1.0. There was very little difference between 

 Precision Recall F1-score Support 

Macro average 0.97 0.97 0.97 949 

Weighted average 0.97 0.97 0.97 949 
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the training and validation accuracy, which suggested no significant overfitting as well as the model had 

good generalization on unseen data.  

Accordingly, the following Fig. 6 presents the 17x17 confusion matrix representing the classification 

outcomes derived from the 17 classes of arrhythmias. The analysis of the confusion matrix suggested that 

the CNN model predicted accurately the AFL, SVTA, WPW, BG, TG, VT, IVR, VFL, Fusion, LBBB, 

RBBB, SDHB, and PR classes. However, the CNN model predicted NSR, APB, AFIB, and PVC classes 

were less accurate. 

 

Fig. 6. The confusion matrix for the CNN model 

4.3 Model Explanation 

This section provides the results associated with the CNN local interpretations by using the LIME 

technique. The instance 180 of class 8 and instance 400 of class 9 were chosen randomly for the local 

explanations. The LIME technique was able to present features that contributed the most to the target 

outcome of class 8 and 9, respectively.  
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Fig. 7. Local interpretability prediction for instance 180 of class 8 

The three graphs that showed each of the essential information about the ECG features and 

classification classes are presented in Fig. 7. The left graph shows that the instance 180 in the dataset 

showed the confidence interval indicating that this instance was 97% belonged to class 8, whereas only 3% 

stated that this instance belonged to class 7. The center graph showed the feature importance scores on the 

instance 180 with 𝑀𝑒𝑎𝑛_𝑅𝑅 had 7% feature importance score, followed by En with 5%, and Max with 5%. 

The RMS had the lowest feature importance score. The right graph showed the 10 features and their 

respective values. The features highlighted in peach color contributed toward class 8.  

 

Fig. 8. The range of local interpretability prediction for instance 180 of class 8 

Fig. 8 shows the bar plot that indicated the range of local interpretability predictions, on instance 180 

for class 8. More specifically, the 𝑀𝑒𝑎𝑛_𝑅𝑅 feature lied within the range −0.01 <  𝑀𝑒𝑎𝑛_𝑅𝑅 <=  0.56, 

the En feature was greater than 0.47, and Max feature lied within the range 0.00 <  𝑀𝑎𝑥 <=  0.60. The 

RMS feature, which had the lowest feature importance score lied within the range −0.47 <  𝑅𝑀𝑆 <=
 0.00.  
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Fig. 9. Local interpretability prediction for instance 400 of class 9 

Fig. 9 presents the local interpretability prediction, for instance 400. The left graph indicated that the 

instance 400 in the dataset showed the confidence interval stating that this instance was 97% belonged to 

class 9, whereas only 3% indicated this instance belonged to class 7. The center graph showed the feature 

importance scores on the instance 400. More specifically, the Mean had 1% feature importance score, 

followed by 𝑝𝑠𝑒 with 1%, and Min with 1%. The Kurt had the lowest feature importance score. In the right 

graph, the features highlighted in purple contributed toward class 9, whereas features highlighted in teal 

color contributed toward class not 9.  

 

Fig. 10. The range of local interpretability prediction for instance 400 of class 9 

The bar plot that indicated the range of local interpretability predictions, for instance 400 for class 9 

is provided in Fig. 10. More specifically, the Mean feature was less than or equal to -0.61, the 𝑝𝑠𝑒 feature 

lies within the range −0.44 <  𝑝𝑠𝑒 <=  0.00, and Min feature was greater than 0.48. The Kurt feature, 

which had the lowest feature of importance, score was greater than 0.55.  

Although the findings presented in Fig. 11 suggested that the LIME technique can provide local 

interpretability prediction, this technique did not offer consistency in terms of providing the same 
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confidence interval and feature importance scores for similar instance. For instance, after second execution 

of the LIME technique on CNN model, the confidence interval indicated that the instance 400 was 99% 

belonged to class 9, whereas only 1% indicated this instance belonged to class 7. In contrast to the feature 

importance scores in Fig. 9, the RMS feature contributed to class not 9, while the Mean and Kurt features 

contributed to class 9. However, both findings in Fig. 9 and Fig. 11 indicated that the instance 400 belonged 

to class 9. 

 

Fig. 11. Local interpretability prediction for instance 400 of class 9 (after second execution) 

 

Fig. 12. The range of local interpretability prediction for instance 400 of class 9 (after second execution) 

Although the LIME technique can be used to interpret the ECG classification model, clinical experts 

are still needed to evaluate the global and local explanations generated by this technique. This is because 

as clinical experts, they can identify potential biases or inconsistencies that may lead to harmful decisions 

as well as in ensuring that the explanations are aligned with the real-world understanding of the ECG 

arrhythmia. 
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5. CONCLUSION 

This study attempted to integrate the LIME technique with the CNN model for classifying 17 types of ECG 

arrhythmia. The ECG classification model consisted of five stages that included pre-processing, feature 

extraction, feature selection, classification and model explanation. Findings of the study indicated that the 

CNN model was able to attain precision, recall, F1-score of 97.00% with an overall accuracy of 99.00%. 

In addition, the findings of the study revealed that LIME technique managed to provide local explanation 

by determining which of the 10 features contributed to the class prediction of the specific instance. The 

integration of LIME technique in the study has contributed to a more interpretable CNN model, which 

initially possessed low interpretability in its decision-making process. Nevertheless, this study was limited 

by the absence of expert validation. For future research, it is recommended that researchers not only adopt 

the other alternative XAI approaches including SHAP or Grad-CAM but also validate their results by using 

clinical experts. 
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