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This study investigates flood frequency analysis in Peninsular Malaysia
using extreme value distributions derived from the L-Moment method.
This study evaluates the relevance of three probability distributions:
Generalized Extreme Value (GEV), Generalized Pareto (GPA), and
Generalized Logistic (GLO), for modelling flood magnitudes. The
research focuses on parameter estimation, performance evaluation, and
quantile estimation to assess flood risks. Utilizing hydrological data
from 1961 to 2023, the research employs the goodness-of-fit tests
alongside performance metrics such as Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Root Mean Square Error
(RMSE), Root Mean Square Percentage Error (RMSPE), and
Coefficient of Determination (R?).The results reveal that the GEV
distribution consistently outperforms GLO and GPA distributions,
achieving superior accuracy across metrics and reliable quantile
estimates for different return periods. The findings contribute to the field
of hydrology by offering robust models for flood risk analysis and
practical strategies for mitigation. Policymakers and urban planners
could leverage these insights to improve disaster management and
infrastructure planning in flood-prone areas of Peninsular Malaysia,
addressing the challenges posed by persistent monsoonal floods.
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1. INTRODUCTION

Flooding is a significant issue for Malaysia, particularly in Peninsular Malaysia, due to its tropical climate,
monsoon seasons, and geographical features. The Northeast Monsoon, occurring from November to March,
often causes heavy and prolonged rainfall, resulting in frequent floods in areas like Kelantan, Terengganu,
and Johor (Rezali et al.,2025). These floods disrupted lives, damaged infrastructure, and incurred
substantial economic losses. Globally, studies indicated that once-in-a-century floods could impact
approximately 1.81 billion people or 23% of the population (Chancel et al., 2023). Effective flood
management is critical, and flood frequency analysis (FFA), employing statistical tools like L-moments
and extreme value distributions, offered essential insights for disaster mitigation and infrastructure planning
(Hamed & Rao, 2019).

This study focuses on advancing flood risk analysis in Peninsular Malaysia by employing Flood
Frequency Analysis (FFA) with L-moment methods to estimate the parameters of extreme value
distributions, including the Generalized Pareto, Generalized Extreme Value, and Generalized Logistic
distributions. By analysing historical streamflow data from 1961 to 2023, the research seeks to identify the
best-fitted distribution for accurately modelling flood frequency. The study addressed the escalating threats
of urbanization, deforestation, and climate change (Abid et al., 2021), offering critical insights for
policymakers, engineers, and planners. These findings aim to enhance flood preparedness, safeguard
communities, and promote sustainable development, despite challenges related to data acquisition and
regional variations in flood behaviour (Mohd Baki et al., 2014). By analysing long-term streamflow data,
the research evaluates the performance of the Generalized Extreme Value (GEV), Generalized Pareto
(GPA), and Generalized Logistic (GLO) distributions to determine the best fit for regional flood
characteristics. The findings are expected to address challenges such as regional variability and data
limitations, contributing to enhanced flood risk assessment, infrastructure design, and climate adaptation
strategies.

2. LITERATURE REVIEW

2.1 Flood Frequency Analysis (FFA)

FFA has seen significant advancements over the years. In the 1990s, methods were developed to
incorporate censored or individual peak flow data and outlier-detection tests were introduced. By the 2000s,
historical data became instrumental in estimating flood quantiles. Today, FFA remains a core method for
assessing and managing flood risks, with continuous efforts to improve accuracy and confidence in
estimates (Ali and Rahman, 2022; Dalrymple, 1960; Stedinger, 1993). The growing body of FFA literature
has prompted many authors to synthesize and review its development (Hamed & Rao, 2019). FFA plays a
vital role in flood-prone regions by supporting flood forecasting through streamflow data analysis (Hamzah
et al., 2020). In Malaysia, FFA has been widely applied in areas such as river basin management, climate
change adaptation, and flood system management, contributing to mitigation planning, flood prediction,
and improved drainage infrastructure (Bakri, 2022; Ahmad et al., 2023; Che Ilias et al., 2021). Predicting
the maximum flood magnitude for specific return periods is a crucial requirement for designing hydraulic
structures and managing infrastructure (Badyalina et al., 2015; Krishna & Veerendra, 2015). FFA uses
probability distributions to analyse high runoff events and their recurrence intervals, making it
indispensable for understanding and managing flood risks (Hamed & Rao, 2019).

2.2 Generalized Extreme Value Distribution (GEV)

The GEV distribution plays a critical role in FFA by modelling the distribution of extreme values,
such as annual maximum flood levels, using three parameters: location (&), scale (o), and shape (k). These
parameters respectively described central tendency, spread, and tail behaviour, with the GEV unifying the
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Gumbel, Fréchet, and Weibull distributions, based on the shape parameter (Hossain et al., 2021). Gumbel
models light-tailed data (k = 0), Fréchet is suited for heavy-tailed data (k > 0), and Weibull applied to
bounded upper-tailed data (k < 0) (Legrand, 2022). Studies, such as those by Ahmad et al. (2023), Yusoff
et al. (2022), and Hamzah et al. (2020), highlighted the effectiveness of GEV in FFA across various
locations in Malaysia, often outperforming other distributions like the Generalized Pareto (GPA) and
Generalized Logistic (GLO). Bakri (2022) further affirmed GEV's suitability in Regional Flood Frequency
Analysis in Peninsular Malaysia, demonstrating its robustness and versatility for extreme value modelling.

2.3 Generalized Pareto Distribution (GPA)

The GPA distribution is widely utilised in hydrological studies to model peak exceedance above a
defined threshold, aiding in flood risk assessment, management, and hydraulic structure design. Its
parameters include the location (), setting the threshold; the scale (@), defining data dispersion; and the
shape (k), influencing tail behaviour and flood event severity. A positive k indicates a heavy upper tail
with a higher probability of extreme events, a negative k resulted in a finite upper tail, and k =0
corresponded to an exponential distribution with a light tail (Campos-Aranda, 2016). GPA's reliability and
robustness, particularly with L-moment parameter estimation, make it a valuable tool in FFA. Hassim et al.
(2022) found GPA to outperform GEV in Kelantan River Basin studies, while Hamzah (2020) applied GPA
to analyse high tides at Port Klang. Badyalina et al. (2022) utilized GPA for flood return period estimation
in Labis, Johor, suggesting that GEV and GLO could also be explored due to annual variations in peak flow
datasets.

2.4 Generalized Logistic Distribution (GLO)

The GLO distribution is a versatile tool in flood frequency analysis, offering insights into the
probability and magnitude of extreme flood events through its ability to model diverse tail behaviours.
Defined by three parameters that are location (&), scale(a), and shape (k)—it effectively represented tail
behaviour, with positive k indicating a heavy upper tail, negative k implying a finite upper limit, and k = 0
suggesting symmetric tails (Hamed & Rao, 2019). GLO is widely applied in studies across Peninsular
Malaysia. Che Ilias et al. (2021) identified GLO as the most robust distribution for Region III, covering the
southern area, while Mohd Baki et al. (2014) found it more accurate than GEV for Region 5. Similarly,
Badyalina et al. (2021) employed GLO in Segamat River analysis, and Bakri (2022) observed that GLO
better fit station data compared to GEV and GPA distributions, further underscoring its suitability for
regional flood frequency studies.

2.5 L-Moment (LMO)

LMO are widely used for parameter estimation of probability distributions in flood frequency analysis,
aiding in the design of flood control infrastructure and hazard management. Introduced by Hosking (1990)
as a refinement of Probability Weighted Moments (PWM), LMO provide robust, nearly unbiased estimates,
even for skewed or heavy-tailed data, and performed well with small sample sizes (Othman et al., 2025;
Marsani et al., 2022; Jan et al., 2016; Vivekanandan, 2015; Hosking, 1990). Studies demonstrated the utility
of LMO in hydrological applications: Badyalina et al. (2021) used it for flood frequency analysis in Segamat
River, Johor, while Mohd Baki et al. (2014) applied it with GEV and GLO distributions for regional flow
analysis in Peninsular Malaysia, identifying GLO as more suitable for estimating design runoff. Hamzah et
al. (2020) employed LMO in Pelabuhan Klang to assess GEV and GPA models for high tide data, and Bakri
(2022) applied LMO for extreme rainfall analysis across 28 rain gauge stations, concluding that GEV was
the best fit for the data.

Performance measurement is essential for evaluating flood frequency models and was categorized
into accuracy performance metrics, the L-Moment Ratio Diagram (LMRD), and goodness-of-fit (GOF)
tests. Accuracy metrics, such as MAE, MAPE, RMSE, RMSPE, and R?, assess the alignment between
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observed and estimated flood data, with lower error values and higher R? indicate better model performance.
Studies, such as those by Badyalina et al. (2021) and Hassim et al. (2022), applied these metrics to evaluate
distributions like GEV, GPA, and GLO, often ranking GPA highest for certain datasets. The LMRD method
examined L-moment ratios to determine the most suitable distribution, with studies like Prahadchai et al.
(2024) concluding that GEV was optimal in specific regions. GOF tests, including the Anderson-Darling
and Kolmogorov-Smirnov tests, were used to validate model suitability, with research by Acharya and Joshi
(2020) and Yusoff et al. (2022) consistently finding GEV as the best fit for datasets. Collectively, these
methods, combined with the robust application of L-moments, confirm the suitability of GEV, GPA, and
GLO distributions for flood frequency analysis in Malaysia, supporting effective flood control and risk
mitigation. This study aims to build on advancements in FFA by identifying the most suitable probability
distribution for modelling flood events in Peninsular Malaysia, utilizing L-moments for parameter
estimation.

3. METHODOLOGY

3.1 Study Area

This study focuses on the station Triang River (2920432) as shown in Fig. 1, located in Jelebu,
Malaysia, which was strategically chosen for its susceptibility to recurrent flooding due to monsoon seasons
impacting both rural and urban populations (Syukri, 2021). Streamflow data spanning 63 years (1961—
2023), obtained from the Department of Irrigation and Drainage Malaysia, provide a robust basis for flood
frequency analysis. The station's long-term peak flow records enable accurate parameter estimation,
validating the use of extreme value distributions for modelling flood magnitudes. The region’s diverse
hydrological characteristics and extensive river systems further enhance the study's relevance, with findings
expected to have significant implications for flood risk management, infrastructure planning, and disaster
preparedness.

Jelebu

(2920432

Fig. 1. Location of study in Peninsular Malaysia

3.2 L-Moment (LMO)

LMO, derived from PWM, are widely used in hydrological studies due to their robustness and ability
to determine the scale and shape of probability distributions (Hamed & Rao, 2019). LMO offer advantages
over traditional moments, including reduced sensitivity to outliers and increased effectiveness with small
sample sizes. It is particularly valuable in estimating flood recurrence intervals, drought severity, and
precipitation trends. By providing reliable estimates of statistical characteristics, LMO enhance the
accuracy of fitting probability distributions to hydrological data, improving risk assessment and water
resource management. The expression for PWM to estimate the r** LMO was introduced by Hosking
(1990) described as follows:
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where x;., was the ordered reading of streamflow, was the PWM, n was the sample size. Thus, the first
four moments of an unbiased sample estimator were given as followed:
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The first four sample estimates for LMO are the mean of distribution (l,), the measure of scale (I,),
the measure of skewness (l3), and the measure of kurtosis (l,) respectively, which are referred to as:

1, = b, (6)

l, = 2b; — b, (7)

I3 = 6b, — 6b; + b, (®)

l, = 20bs — 30b, + 12b, — b, )

LMO can also be used to derive the LMO ratios, which were analogous to conventional moment ratios
(Hosking, 1990). Hence, the samples of the LMO ratio are given as:

L
_k (10)

t, I,

L
_3 (11)

t3 L
(= (12)

L

3.2.1 Generalized Extreme Value (GEV) Distribution

The GEV distribution has been widely used for the analysis of extreme events. The GEV distribution
is widely applied in the frequency analysis of both flood and drought phenomena, (Zeng et al., 2015). The
probability density function of the GEV distribution is as follows (Hamed & Rao, 2019):

o2 e o)

where & is the location parameter, & > 0 is the scale parameter, k is the shape parameter.
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The cumulative density function of the GEV is denoted as F'(x).

F(x) =exp {— [1 -k <x ; $>]_1/k} (14)

Consequently, the parameters &, « and k associated with GEV distribution can be estimated as
outlined in Hosking et al. (1985).

k = 7.8590 + 2.9554(C?2 (15)
q= Lk (16)
Fr(1+k)@—27%)
. @& _
€=11+E[F(1+k)—1] (17
where C = z__ logZ.
3+t3 log3

3.2.2 Generalized Pareto Distribution (GPA)

The GPA has been used in hydrology for modelling the probability of an extreme flood occurrence.
This distribution is especially effective for fitting high-accuracy tail data in flood distributions. The
probability density function of the three-parameters GPA distribution is given by:

1

1 k [k
fo=-[1-2c-9| )

where & represented the location parameter, o the scale parameter, and k the shape parameter (Hamed &
Rao, 2019).

The equation below depicts the cumulative distribution function of GPA given by:

Foo=1-[1- Lo (19

where & is the location parameter, « > 0 is the scale parameter, k is the shape parameter.

Thus, the three parameters of &, « and in the GPA distribution can be estimated as in Hamed and Rao
(2019).

=1 (20)
1+t3

a=LA+kR+k 1)

=1, -L,2+k (22)

3.2.3 Generalized Logistic Distribution (GLO)

The GLO distribution is a statistical distribution used to estimate the highest annual flood peak values.
It is mainly adopted to estimate the parameters of data sets that exhibit a distribution pattern similar to the
logistic distribution. This method is quite useful in predicting the frequency and severity of extreme
flooding events. Hence, the probability density function of this distribution can be expressed as follows:
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1
11 k [
) PR ] (23)
f@=_[1-2@-9
where x is a random variable, ¢ is the location parameter, « is the scale parameter, and k is shape parameter.

Next, the cumulative density function for GLO is given by:

1
FG)=1— [1 —g(x—s)]k (24)

where x is a random variable, £ is the location parameter, « is the scale parameter, and k is shape parameter.

Therefore, the three parameters of &, a and k in GLO distribution can be estimated as follows (Hamed
& Rao, 2019):

k=—t; (25)

2 = L 26
“= r(o)[r(1 —k) -1 - k)] (26)
E=1, — % +af(r( - k) @7)

3.2.4 Gringorten Plotting Position

The Gringorten plotting position formula, introduced by Gringorten (1963), is a method for effectively

plotting ordered observations, particularly useful for small sample sizes (less than 20). The formula, P; =
i—0.44
n+0.12
favoured for its accuracy and effectiveness in data visualization and probability plotting.

calculates the plotting position P; for the i*" ranked value in a dataset of size n. This method is

3.2.5 Quantile Estimate using L-Moment

Quantile estimates are computed after the estimation of parameters related to different return periods.
The probability of non-exceedance is defined as F = 1 — %(Acharya & Joshi, 2020), where T is the return

period, such as T =2, 10, 50 and 100 years. Thus, the quantile estimates for the GEV using L-moments are
given as shown below:

xr = &+ {1 = [~ log(PI}* 28)

where ¢ is the location parameter, k is the shape parameter, and F is the probability of non-exceedance.
Next, the quantile estimates for the GPA using L-moments are given as:

xT:E+%[1—(1—F)]" (29)

where ¢ is the location parameter, « is the scale parameter, k > 0 is the shape parameter, and T is the
return period of formula of probability of non-exceedance F = 1 — 1/T.

Lastly, the quantile estimates for the GLO using L-moments is:
a
xp =+ [1-{(1 - F)/F}¥] (30)

where x is random variable, ¢ is the location parameter, a is the scale parameter, and k is the shape
parameter, and F is the probability of non-exceedance.
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3.3 Performance Measurement

3.3.1 Accuracy Measure Performance

Five accuracy performance measures used in this research are the mean absolute error (MAE), the
mean absolute percentage error (MAPE), the root mean square error (RMSE), the root mean square
percentage error (RMSPE), the coefficient of determination (R?) and Euclidean distance (d).

1 n
MAE == Y |F(y) = F))| (31
i=1
_ 100 X FO) = FOY) 1
MAPE = m ;| T | (32)
— J B FG) — FGD)? 63
n
_ 1N (FO) —FOY (34)
2 _ ?=1F(yi) - F(}_,i)z (35)
PF@)-F@) P+ X F(y) — F(3)?
d=(x— %)%+ (¥, — y1)? (36)

where n is the number of observations, F(y;) represented the actual values, F(9;) represented the predicted
values for the i" observation, and F(¥;) represented the mean of the actual values.

MAE measures the average size of prediction errors by taking the absolute difference between
predicted and actual values. It is straightforward, treats all errors equally, and is less affected by extreme
values, making it useful for general error assessment. However, it doesn’t emphasize larger errors, which
may limit its use in some cases. MAPE shows the average error as a percentage of actual values, making it
easy to interpret across different data scales. It’s common in forecasting but can be unreliable when actual
values are near zero, as this causes large or undefined percentage errors. RMSE averages the squared
differences between predicted and actual values, then takes the square root. It highlights larger errors due
to squaring, which is helpful when big mistakes are costly. However, it’s sensitive to outliers, which can
skew results. RMSPE is like RMSE but expresses errors as percentages of the actual values. It is useful for
comparing performance across datasets with different scales but shares MAPE’s issue with near-zero
values, making it less reliable in those cases. R? indicates how much of the variation in the data is explained
by the model, with values closer to 1 showing a better fit. It is widely used in regression to gauge model
quality but does not reveal the size of prediction errors and can mislead in complex models. Euclidean
distance in L-moment ratio diagrams quantifies the separation between two points in a two-dimensional
space, typically defined by L-moment ratios like L-skewness (t3) and L-kurtosis (t,). In this application,
it measures how closely a sample’s L-moment ratios match those of theoretical distributions.

3.3.2 L-Moment Ratio Diagram (LMRD)

The LMRD, proposed by Hosking and Wallis (1997), is a useful tool for determining an appropriate
distribution that accurately depicted the catchment’s streamflow series. To create a ratio diagram, one must
have a straightforward explicit expression for t, in terms of t; for the chosen probability distributions. The
following types of polynomial approximations are used:
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ty = Ag + Agtz + Az(ts)z + A3(t3)® + Ag(ta)* + As(tz) + Ag(tz)® + A;(ts)” (37)
+ Ag(ts)

Table 1. Polynomial approximations of #; as a function of #; based on L-moment method

GPA GEV GLO
Ay 0 0.10701  0.16667
A, 020196  0.11090 0

A, 095924  0.84838  0.83333
A; 020096  -0.06669 0
A, 0.04061  0.000567 0
Ag 0 -0.04208 0
Aq 0 0.03763 0
4, 0 0 0
Ag 0 0 0

Table 1 provided the coefficients of Ak for the GEV, GPA, and GLO distributions, respectively, based
on L-moment, where k = 0,1, 2, ..., 8. By substituted t5 over the range —0.5 < t; < 0.9, yield values of ¢,
for each distribution respectively. The range selected because mostly from fall between the range -0.5 and
0.9. The constructed LMRD for GEV, GPA, and GLO distributions respectively will be illustrated in Fig.
2.

L-Kurtosis vs L-Skewness
1.2

1

0.8 i
o7
@ pe
k 06 .
£ =7
< -
% 0.4 s
L - Lzt
S ez i
~. T T -
- —
N P
0.5 0.3 0.1 0.1 0.3 0.5 07 0.9
-0.2
L-Skewness
————— GEV ---GLO — --GPA

Fig. 2. L-Moment Ratio Diagram
3.3.3 Goodness of Fit Test

Anderson Darling Test

The Anderson-Darling (AD) test is a statistical tool designed to evaluate the goodness-of-fit between
a dataset and a specified distribution, making it particularly valuable for flood frequency analysis. Its
sensitivity to deviations in the distribution's tails enhanced its effectiveness in analysing extreme events
like flooding.
Hy: The data follow the specified distribution.
H;: The data do not follow the specified distribution.

P-value must be less than @ to reject the null hypothesis. Hence, AD test statistic is as follows:
n
1
AD = —n— ;Z[(Zi — DI(FXw)) + In(1 = F(Xnisn)] (38)
i=1

where n is the sample size and F(X(i)) is the empirical cumulative distribution function of the ordered
sample X(l) < X(z) < < X(n)-
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Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) test is a nonparametric statistical method widely used to compare a
dataset with a specified distribution (Hamed & Rao, 2019).

Hy: The data follow the specified distribution.
H;: The data do not follow the specified distribution.

P-value must be less than a to reject null hypothesis. Hence, the test statistic is as follows:
Dyj = max |Fy(x) — Fo(x)| (39)

where N; is the cumulative number of sample events at class limit j, and the values of Fyy (x) are estimated,
1/k,2/k,..., etc. are the values of F(x), where k is the number of class intervals.

4. RESULTS AND DISCUSSION

41 LMO

Table 2 presents the initial four elements involved in the computation of L-moments. These
components are mean (l;), scale (I,), skewness (I3), and kurtosis (I,), provide insights into the statistical
characteristics of the flood data at this station.

Table 2. First Four L-Moment Component

I (Mean) I, (Scale) I; (Skewness) 1y (Kurtosis)
43715365 1.6051485 0.2264257 0.2397717

The first component 1, (4.3715), represents the central tendency, reflecting the average magnitude of
flood events. The second component [,,(1.6051), indicates the variability around the mean, demonstrating
moderate variation in flood magnitudes. The third component [, (0.2264) signifies a minor positive
skewness in the data distribution, suggesting that high-magnitude floods are infrequent but possible.
Finally, the 1, (0.2398), reflects light tails in the distribution, implying that extreme flood events are rare.

4.2 Parameter Estimation

Table 3 shows the estimated parameters for GEV, GPA and GLO distributions using the LMO method.
From the table, GPA distribution exhibits the highest @ value (6.0547) among the distributions. The GLO
distribution has the highest value & (4.0027). This value signifies that the flood magnitude modelled by the GLO
distribution is the highest. The GLO distribution also shows a negative k value that specifies a bounded tail
distribution. This value suggests that the model has more frequent events with fewer extremes, which may require
consistent but moderate flood management strategies (Hamed & Rao, 2019).

Table 3. Estimated Distribution Parameters using LMO Methods

Distribution @ & k
GEV 241087887  3.08395543  0.04542615
GPA 6.0547059  0.34982765  0.5055058
GLO 1.5531227 4.0027214  -0.1410622

4.2 Gringorten Plotting Position

Fig. 3 presents the Gringorten Plotting Position graph, comparing observed peak flow measurements
with predicted values from the GEV, GPA, and GLO distributions. The x-axis represents the Gringorten
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plotting position probability, while the y-axis shows peak flow discharge in m3/s. The graph indicates that
GPA and GLO distributions closely align with observed values, demonstrating a strong fit to the data
(Samat & Othman, 2023). To assess the accuracy of the plotting positions relative to the fitted distributions,
the Euclidean distance metric is used to provide a quantitative measure of goodness-of-fit by evaluating
deviations between observed data and theoretical quantiles from the GEV, GPA, and GLO distributions.

Gringorten Plotting Position

Psakflow Discharge

Excoedanca probability

4Observed ®GEV ©GPA 4GLO

Fig. 3. Gringorten Plotting Position

Table 4. Euclidean Distance of candidate distribution

Distribution Euclidean Distance
GEV 7.050357
GPA 9.196464
GLO 6.224768

Table 4 summarizes the Euclidean distances between observed and predicted values for the GEV,
GPA, and GLO distributions using Gringorten plotting positions. The results show that the GLO
distribution, with the smallest Euclidean distance of 6.2248, is the most suitable model for flood frequency
analysis at the analysed station. The GEV distribution, with a Euclidean distance of 7.0504, demonstrates
a better fit than the GPA distribution but is less accurate than the GLO distribution. The GPA distribution,
having the highest Euclidean distance of 9.1965, is the least suitable model among the three distributions.

4.3 Performance Measurement

4.3.1 Accuracy Performance Measures

Table 5. Test Performance Measurement for Distributions

Distribution GEV GPA GLO

MAPE 0.2275573 0.1270529 0.3044755
MAE 0.536894 0.5826525 0.5396244
RMSE 0.8882615 1.158646 0.784247
RMSPE 65.05872 19.93939 99.92112
R 0.9180464 0.858907 0.9366164

Regarding performance metrics in Table 5, the GPA distribution shows the lowest MAPE (0.1271),
indicating that it has the smallest average percentage error, thus providing the most accurate predictions on
average among the distributions. For MAE, the GEV (0.5369) performs better than the other distributions,
indicating more accurate absolute estimates. The RMSE values highlight that the GLO distribution (0.7842)

has the lowest value, indicating it performs best in minimising large prediction errors. For the metric
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RMSPE, the GPA distribution (19.9394) has the lowest value, which suggests it performs better than GEV
(65.05872) and GLO (99.9211). Finally, the R? values indicate that the GLO distribution (0.9366) explains
the highest proportion of variance in the data, followed by GEV (0.9180) and the GPA distribution (0.8589).

4.3.2 L-Moment Ratio Diagram

Table 6 presents L-moment Ratios (LMR) for a river station in Peninsular Malaysia, capturing key
hydrological attributes using three LMO statistics: t, (L-CV), t; (L-skewness), and t, (L-kurtosis), which
describe variability, asymmetry, and tail heaviness, respectively. The t, value of 0.3672 indicates moderate
variability, balancing consistency and dispersion. The t;value of 0.1411 reflects moderate right skewness,
suggesting a slightly longer tail on the right side. The t, value of 0.1494 indicates moderately heavy tails,
implying the potential presence of extreme values without being overly pronounced. These LMR statistics
provide a comprehensive understanding of the hydrological data, enhancing flood prediction models. The
LMRD for the three distributions is depicted in Fig. 4.

Table 6. LMR

L-CV () L-Skewness (#3) L-Kurtosis (z2)

0.3672 0.1411 0.1494

L-Moment Ratio Diagram: L-Kurtosis vs L-Skewness
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Fig. 4. LMRD

Fig. 4 shows the LMRD depicting the relationship between L-skewness (along the x-axis) and L-
kurtosis (along the y-axis) for the observed data along with three theoretical extreme value distributions:
GEV, GPA and GLO distributions. Theoretical curves for each distribution are shown in the diagram, and
the observed data point (0.1494) is plotted at a position determined by its respective L-Skewness and L-
Kurtosis values.

The observed data point (0.1494) is closest to the curve of the GEV distribution, which implies that
the GEV model is the most suitable for the data. The observed data show more scatter from the GLO and
GPA curves. This indicates that both distributions are less accurate in modelling the observed data. The
major outcome from the LMRD reveals that the GEV distribution fits best for this dataset, and is effective
in flood frequency analysis, promising in correctly representing the statistical properties of observed data.

4.3.3 Goodness of Fit Test

Table 7 presents the p-value from the GOF tests for the GEV, GPA and GLO distributions. In terms
of GOF, the AD test p-value for GEV (0.3979) indicates the best fit, while GPA has the smallest AD p-
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value (0.000009524), suggesting a poor fit to the data. Similarly, the K-S test p-value further confirms that
GLO (0.5923) fits the data well, while the GPA distribution (0.1567) performs worse than GEV and GLO.

Table 7. P-value of GOF Test for Each Distributions

Distribution GEV GPA GLO
AD 0.3979  0.000009524  0.3684
K-S 0.4244  0.1567 0.5923

4.4 Measurement Ranking

Table 8 puts the Generalized Extreme Value (GEV) distribution at the forefront as the most suitable
model for flood frequency model for this study. This can be supported by its outstanding performance in
the GOF tests, specifically the AD and K-S tests, combined with its good results in other accuracy measures.
Besides, GEV obtained the highest cumulative rank score in Table 8, further proving its appropriateness
for this station. By contrast, the GLO and GPA distributions are the least favourable, with their total ranks
scores being the lowest among the three. The present study concludes that the GEV distribution is the best
and most appropriate model for the purpose of flood frequency analysis in the river system of Peninsular
Malaysia.

Table 8. Rank Score for Distributions

Distribution GEV_ GPA  GLO

AD 3 1 2
K-S 2 1 3
MAPE 2 3 1
MAE 3 1 2
RMSE 2 1 3
RMSPE 2 3 1
R 2 1 3

Total Score 16 11

—_
W

4.5 Quantile Estimate

Table 9 demonstrates the GEV distribution's effectiveness in modeling flood magnitudes, showing a
consistent increase in discharge with longer return periods. For a 10-year period (p = 0.90), the estimated
flood discharge is 8.2412 m3 /s, rising to 11.7045 m3 /s, for 50 years (p = 0.98) and 13.0923 m3 /s for 100
years (p = 0.99). Compared to other distributions, GEV provides slightly lower estimates than GLO for
shorter periods but higher than GPA, while offering more conservative predictions for longer periods, such
as 100 years. This makes GEV particularly suitable for applications requiring conservative flood risk
assessments, ensuring realistic and consistent predictions. Its reliability across return periods underscores
its value in long-term flood risk management and infrastructure design capable of withstanding extreme
hydrological events.

Table 9. Quantile Estimate Based on Return Periods

Return Period  Probability (p) Estimated Flood Discharge (m®/s)

(Years) GEV GPA GLO

10 0.90 8.241226 8.228045 8.382849
50 0.98 11.704503  12.111101  10.652548
100 0.99 13.092262  14.074898  11.153635
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5. CONCLUSION

This research presents a comprehensive framework for understanding and managing flood risks in
Peninsular Malaysia, a region highly vulnerable to monsoon-induced flooding. By employing advanced
statistical methods, including L-moments and extreme value distributions (GEV, GPA, and GLO), the study
presents a robust model for predicting flood magnitude and frequency. The findings highlight the efficiency
of these techniques in analysing long-term records, estimating return periods, and identifying suitable
probability distributions, with the Generalized Extreme Value (GEV) distribution emerging as the most
reliable model. The GEV distribution consistently outperforms others in goodness-of-fit tests and
accurately predicts flood magnitudes, providing valuable quantile estimates for 10-, 50-, and 100-year
return periods at 8.24 m3/s, 11.70 m3/s, and 13.09 m3/s, respectively. The research emphasizes the
importance of integrating these findings into regional planning and flood management strategies to address
challenges from urbanization and climate change, ultimately improving infrastructure resilience and
community preparedness.

The study offers several recommendations to enhance flood management and preparedness.
Policymakers and engineers are advised to prioritize the use of the GEV distribution for designing flood
control structures, as it is identified as the most effective model for extreme flood events. Utilizing quantile
estimates in high-risk areas can aid in targeted strategies and efficient resource allocation. Collaboration
between government bodies and academic institutions is crucial for improving real-time streamflow data
accuracy, which will enhance the precision of flood frequency models and future flood management efforts.
Future research should apply the L-Moment method to regions with varying hydrological conditions or
limited data to validate its robustness and adaptability. Expanding the analysis to other river systems and
regions in Malaysia is also recommended, particularly to assess the impacts of climate change on flood
magnitudes and return periods, thereby providing critical insights for scenario planning and improving
preparedness strategies.
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