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 This study investigates flood frequency analysis in Peninsular Malaysia 

using extreme value distributions derived from the L-Moment method. 

This study evaluates the relevance of three probability distributions: 

Generalized Extreme Value (GEV), Generalized Pareto (GPA), and 

Generalized Logistic (GLO), for modelling flood magnitudes. The 

research focuses on parameter estimation, performance evaluation, and 

quantile estimation to assess flood risks. Utilizing hydrological data 

from 1961 to 2023, the research employs the goodness-of-fit tests 

alongside performance metrics such as Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), Root Mean Square Error 

(RMSE), Root Mean Square Percentage Error (RMSPE), and 

Coefficient of Determination (𝑅2).The results reveal that the GEV 

distribution consistently outperforms GLO and GPA distributions, 

achieving superior accuracy across metrics and reliable quantile 

estimates for different return periods. The findings contribute to the field 

of hydrology by offering robust models for flood risk analysis and 

practical strategies for mitigation. Policymakers and urban planners 

could leverage these insights to improve disaster management and 

infrastructure planning in flood-prone areas of Peninsular Malaysia, 

addressing the challenges posed by persistent monsoonal floods. 
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1. INTRODUCTION 

Flooding is a significant issue for Malaysia, particularly in Peninsular Malaysia, due to its tropical climate, 

monsoon seasons, and geographical features. The Northeast Monsoon, occurring from November to March, 

often causes heavy and prolonged rainfall, resulting in frequent floods in areas like Kelantan, Terengganu, 

and Johor (Rezali et al.,2025). These floods disrupted lives, damaged infrastructure, and incurred 

substantial economic losses. Globally, studies indicated that once-in-a-century floods could impact 

approximately 1.81 billion people or 23% of the population (Chancel et al., 2023). Effective flood 

management is critical, and flood frequency analysis (FFA), employing statistical tools like L-moments 

and extreme value distributions, offered essential insights for disaster mitigation and infrastructure planning 

(Hamed & Rao, 2019).  

This study focuses on advancing flood risk analysis in Peninsular Malaysia by employing Flood 

Frequency Analysis (FFA) with L-moment methods to estimate the parameters of extreme value 

distributions, including the Generalized Pareto, Generalized Extreme Value, and Generalized Logistic 

distributions. By analysing historical streamflow data from 1961 to 2023, the research seeks to identify the 

best-fitted distribution for accurately modelling flood frequency. The study addressed the escalating threats 

of urbanization, deforestation, and climate change (Abid et al., 2021), offering critical insights for 

policymakers, engineers, and planners. These findings aim to enhance flood preparedness, safeguard 

communities, and promote sustainable development, despite challenges related to data acquisition and 

regional variations in flood behaviour (Mohd Baki et al., 2014). By analysing long-term streamflow data, 

the research evaluates the performance of the Generalized Extreme Value (GEV), Generalized Pareto 

(GPA), and Generalized Logistic (GLO) distributions to determine the best fit for regional flood 

characteristics. The findings are expected to address challenges such as regional variability and data 

limitations, contributing to enhanced flood risk assessment, infrastructure design, and climate adaptation 

strategies. 

2. LITERATURE REVIEW 

2.1 Flood Frequency Analysis (FFA) 

FFA has seen significant advancements over the years. In the 1990s, methods were developed to 

incorporate censored or individual peak flow data and outlier-detection tests were introduced. By the 2000s, 

historical data became instrumental in estimating flood quantiles. Today, FFA remains a core method for 

assessing and managing flood risks, with continuous efforts to improve accuracy and confidence in 

estimates (Ali and Rahman, 2022; Dalrymple, 1960; Stedinger, 1993). The growing body of FFA literature 

has prompted many authors to synthesize and review its development (Hamed & Rao, 2019). FFA plays a 

vital role in flood-prone regions by supporting flood forecasting through streamflow data analysis (Hamzah 

et al., 2020). In Malaysia, FFA has been widely applied in areas such as river basin management, climate 

change adaptation, and flood system management, contributing to mitigation planning, flood prediction, 

and improved drainage infrastructure (Bakri, 2022; Ahmad et al., 2023; Che Ilias et al., 2021). Predicting 

the maximum flood magnitude for specific return periods is a crucial requirement for designing hydraulic 

structures and managing infrastructure (Badyalina et al., 2015; Krishna & Veerendra, 2015). FFA uses 

probability distributions to analyse high runoff events and their recurrence intervals, making it 

indispensable for understanding and managing flood risks (Hamed & Rao, 2019). 

2.2 Generalized Extreme Value Distribution (GEV) 

The GEV distribution plays a critical role in FFA by modelling the distribution of extreme values, 

such as annual maximum flood levels, using three parameters: location (ξ), scale (α), and shape (k). These 

parameters respectively described central tendency, spread, and tail behaviour, with the GEV unifying the 
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Gumbel, Fréchet, and Weibull distributions, based on the shape parameter (Hossain et al., 2021). Gumbel 

models light-tailed data (𝑘 = 0), Fréchet is suited for heavy-tailed data (𝑘 > 0), and Weibull applied to 

bounded upper-tailed data (𝑘 < 0) (Legrand, 2022). Studies, such as those by Ahmad et al. (2023), Yusoff 

et al. (2022), and Hamzah et al. (2020), highlighted the effectiveness of GEV in FFA across various 

locations in Malaysia, often outperforming other distributions like the Generalized Pareto (GPA) and 

Generalized Logistic (GLO). Bakri (2022) further affirmed GEV's suitability in Regional Flood Frequency 

Analysis in Peninsular Malaysia, demonstrating its robustness and versatility for extreme value modelling.  

2.3 Generalized Pareto Distribution (GPA) 

The GPA distribution is widely utilised in hydrological studies to model peak exceedance above a 

defined threshold, aiding in flood risk assessment, management, and hydraulic structure design. Its 

parameters include the location (𝜉), setting the threshold; the scale (𝛼), defining data dispersion; and the 

shape (𝑘), influencing tail behaviour and flood event severity. A positive k indicates a heavy upper tail 

with a higher probability of extreme events, a negative k resulted in a finite upper tail, and 𝑘 = 0 

corresponded to an exponential distribution with a light tail (Campos-Aranda, 2016). GPA's reliability and 

robustness, particularly with L-moment parameter estimation, make it a valuable tool in FFA. Hassim et al. 

(2022) found GPA to outperform GEV in Kelantan River Basin studies, while Hamzah (2020) applied GPA 

to analyse high tides at Port Klang. Badyalina et al. (2022) utilized GPA for flood return period estimation 

in Labis, Johor, suggesting that GEV and GLO could also be explored due to annual variations in peak flow 

datasets.  

2.4 Generalized Logistic Distribution (GLO) 

The GLO distribution is a versatile tool in flood frequency analysis, offering insights into the 

probability and magnitude of extreme flood events through its ability to model diverse tail behaviours. 

Defined by three parameters that are location (𝜉), scale(𝛼), and shape (𝑘)—it effectively represented tail 

behaviour, with positive k indicating a heavy upper tail, negative k implying a finite upper limit, and 𝑘 = 0 

suggesting symmetric tails (Hamed & Rao, 2019). GLO is widely applied in studies across Peninsular 

Malaysia. Che Ilias et al. (2021) identified GLO as the most robust distribution for Region III, covering the 

southern area, while Mohd Baki et al. (2014) found it more accurate than GEV for Region 5. Similarly, 

Badyalina et al. (2021) employed GLO in Segamat River analysis, and Bakri (2022) observed that GLO 

better fit station data compared to GEV and GPA distributions, further underscoring its suitability for 

regional flood frequency studies.  

2.5 L-Moment (LMO) 

LMO are widely used for parameter estimation of probability distributions in flood frequency analysis, 

aiding in the design of flood control infrastructure and hazard management. Introduced by Hosking (1990) 

as a refinement of Probability Weighted Moments (PWM), LMO provide robust, nearly unbiased estimates, 

even for skewed or heavy-tailed data, and performed well with small sample sizes (Othman et al., 2025; 

Marsani et al., 2022; Jan et al., 2016; Vivekanandan, 2015; Hosking, 1990). Studies demonstrated the utility 

of LMO in hydrological applications: Badyalina et al. (2021) used it for flood frequency analysis in Segamat 

River, Johor, while Mohd Baki et al. (2014) applied it with GEV and GLO distributions for regional flow 

analysis in Peninsular Malaysia, identifying GLO as more suitable for estimating design runoff. Hamzah et 

al. (2020) employed LMO in Pelabuhan Klang to assess GEV and GPA models for high tide data, and Bakri 

(2022) applied LMO for extreme rainfall analysis across 28 rain gauge stations, concluding that GEV was 

the best fit for the data.  

Performance measurement is essential for evaluating flood frequency models and was categorized 

into accuracy performance metrics, the L-Moment Ratio Diagram (LMRD), and goodness-of-fit (GOF) 

tests. Accuracy metrics, such as MAE, MAPE, RMSE, RMSPE, and R², assess the alignment between 
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observed and estimated flood data, with lower error values and higher R² indicate better model performance. 

Studies, such as those by Badyalina et al. (2021) and Hassim et al. (2022), applied these metrics to evaluate 

distributions like GEV, GPA, and GLO, often ranking GPA highest for certain datasets. The LMRD method 

examined L-moment ratios to determine the most suitable distribution, with studies like Prahadchai et al. 

(2024) concluding that GEV was optimal in specific regions. GOF tests, including the Anderson-Darling 

and Kolmogorov-Smirnov tests, were used to validate model suitability, with research by Acharya and Joshi 

(2020) and Yusoff et al. (2022) consistently finding GEV as the best fit for datasets. Collectively, these 

methods, combined with the robust application of L-moments, confirm the suitability of GEV, GPA, and 

GLO distributions for flood frequency analysis in Malaysia, supporting effective flood control and risk 

mitigation. This study aims to build on advancements in FFA by identifying the most suitable probability 

distribution for modelling flood events in Peninsular Malaysia, utilizing L-moments for parameter 

estimation.  

3. METHODOLOGY 

3.1 Study Area  

This study focuses on the station Triang River (2920432) as shown in Fig. 1, located in Jelebu, 

Malaysia, which was strategically chosen for its susceptibility to recurrent flooding due to monsoon seasons 

impacting both rural and urban populations (Syukri, 2021). Streamflow data spanning 63 years (1961–

2023), obtained from the Department of Irrigation and Drainage Malaysia, provide a robust basis for flood 

frequency analysis. The station's long-term peak flow records enable accurate parameter estimation, 

validating the use of extreme value distributions for modelling flood magnitudes. The region’s diverse 

hydrological characteristics and extensive river systems further enhance the study's relevance, with findings 

expected to have significant implications for flood risk management, infrastructure planning, and disaster 

preparedness. 

 

Fig. 1. Location of study in Peninsular Malaysia 

3.2  L-Moment (LMO) 

LMO, derived from PWM, are widely used in hydrological studies due to their robustness and ability 

to determine the scale and shape of probability distributions (Hamed & Rao, 2019). LMO offer advantages 

over traditional moments, including reduced sensitivity to outliers and increased effectiveness with small 

sample sizes. It is particularly valuable in estimating flood recurrence intervals, drought severity, and 

precipitation trends. By providing reliable estimates of statistical characteristics, LMO enhance the 

accuracy of fitting probability distributions to hydrological data, improving risk assessment and water 

resource management. The expression for PWM to estimate the 𝑟𝑡ℎ LMO was introduced by Hosking 

(1990) described as follows: 
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where 𝑥𝑖:𝑛 was the ordered reading of streamflow, was the PWM, 𝑛 was the sample size. Thus, the first 
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The first four sample estimates for LMO are the mean of distribution (𝑙1), the measure of scale (𝑙2), 

the measure of skewness (𝑙3), and the measure of kurtosis (𝑙4) respectively, which are referred to as: 

 

 𝑙1 = 𝑏0 (6) 

 𝑙2 = 2𝑏1 − 𝑏0 (7) 

 𝑙3 = 6𝑏2 − 6𝑏1 + 𝑏0 (8) 

 𝑙4 = 20𝑏3 − 30𝑏2 + 12𝑏1 − 𝑏0 (9) 

 

LMO can also be used to derive the LMO ratios, which were analogous to conventional moment ratios 

(Hosking, 1990). Hence, the samples of the LMO ratio are given as: 
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𝑙1

 (10) 
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 (11) 

𝑡4 =
𝑙4
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 (12) 

3.2.1 Generalized Extreme Value (GEV) Distribution 

The GEV distribution has been widely used for the analysis of extreme events. The GEV distribution 

is widely applied in the frequency analysis of both flood and drought phenomena, (Zeng et al., 2015).  The 

probability density function of the GEV distribution is as follows (Hamed & Rao, 2019): 
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1

𝛼
 [1 − 𝑘 (
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)]

−
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𝑘

−1
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𝛼
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} 
(13) 

where   is the location parameter, 0  is the scale parameter, 𝑘 is the shape parameter.  
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The cumulative density function of the GEV is denoted as ( )F x . 

 

𝐹(𝑥) = exp {− [1 − 𝑘 (
𝑥 − 𝜉

𝛼
)]

−1/𝑘

} (14) 

 

Consequently, the parameters  ,  and k associated with GEV distribution can be estimated as 

outlined in Hosking et al. (1985). 

𝑘̂ = 7.8590 + 2.9554𝐶2 (15) 

𝛼̂ =  
𝑙2𝑘̂

Γ(1 + 𝑘̂)(1 − 2−𝑘)
 (16) 

𝜉 = 𝑙1 +
𝛼̂

𝑘̂
 [Γ(1 + 𝑘̂) − 1] (17) 

where 𝐶 =
2

3+𝑡3
−

log 2

log 3
. 

3.2.2 Generalized Pareto Distribution (GPA)  

The GPA has been used in hydrology for modelling the probability of an extreme flood occurrence. 

This distribution is especially effective for fitting high-accuracy tail data in flood distributions. The 

probability density function of the three-parameters GPA distribution is given by:  

 

𝑓(𝑥) =
1

𝛼
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1
𝑘
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(18) 

 

where ξ represented the location parameter, α the scale parameter, and k the shape parameter (Hamed & 

Rao, 2019). 

The equation below depicts the cumulative distribution function of GPA given by: 

𝐹(𝑥) = 1 − [1 −
𝑘

𝛼
(𝑥 − 𝜉)]

1

𝑘
   

(19) 

 

where   is the location parameter, 0  is the scale parameter, 𝑘 is the shape parameter.  

Thus, the three parameters of  ,  and in the GPA distribution can be estimated as in Hamed and Rao 

(2019).  

𝑘̂ =
1−3𝑡3

1+𝑡3
  (20) 

𝛼̂ =  𝑙2(1 + 𝑘̂)(2 + 𝑘̂) (21) 

𝜉 = 𝑙1 − 𝑙2(2 + 𝑘̂) (22) 

3.2.3 Generalized Logistic Distribution (GLO) 

The GLO distribution is a statistical distribution used to estimate the highest annual flood peak values. 

It is mainly adopted to estimate the parameters of data sets that exhibit a distribution pattern similar to the 

logistic distribution. This method is quite useful in predicting the frequency and severity of extreme 

flooding events. Hence, the probability density function of this distribution can be expressed as follows: 
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𝑓(𝑥) =
1

𝛼
[1 −

𝑘

𝛼
(𝑥 − 𝜉)]

1
𝑘

−1

 (23) 

where 𝑥 is a random variable, 𝜉 is the location parameter, 𝛼 is the scale parameter, and 𝑘 is shape parameter.  

Next, the cumulative density function for GLO is given by: 

 

𝐹(𝑥) = 1 − [1 −
𝑘

𝛼
(𝑥 − 𝜉)]

1
𝑘

 (24) 

where 𝑥 is a random variable, 𝜉 is the location parameter, 𝛼 is the scale parameter, and 𝑘 is shape parameter.  

Therefore, the three parameters of 𝜉, 𝛼 and 𝑘 in GLO distribution can be estimated as follows (Hamed 

& Rao, 2019): 

𝑘̂ = −𝑡3 (25) 

𝛼̂ =
𝑙2

Γ(𝑘̂)[Γ(1 − 𝑘̂) − Γ(2 − 𝑘̂)]
 (26) 

𝜉 = 𝑙1 −
𝛼̂

𝑘̂
+ 𝛼̂Γ̂(𝑘̂)Γ(1 − 𝑘̂) (27) 

3.2.4 Gringorten Plotting Position  

The Gringorten plotting position formula, introduced by Gringorten (1963), is a method for effectively 

plotting ordered observations, particularly useful for small sample sizes (less than 20). The formula, 𝑃𝑖 =
𝑖−0.44

𝑛+0.12
  calculates the plotting position 𝑃𝑖  for the 𝑖𝑡ℎ ranked value in a dataset of size 𝑛.  This method is 

favoured for its accuracy and effectiveness in data visualization and probability plotting. 

3.2.5 Quantile Estimate using L-Moment  

Quantile estimates are computed after the estimation of parameters related to different return periods. 

The probability of non-exceedance is defined as F = 1 −
1

T
 (Acharya & Joshi, 2020), where T is the return 

period, such as T = 2, 10, 50 and 100 years. Thus, the quantile estimates for the GEV using L-moments are 

given as shown below: 

𝑥𝑇 = 𝜉 +
𝛼

𝑘
 {1 − [− log(𝐹)]}𝑘 (28) 

where 𝜉 is the location parameter, 𝑘 is the shape parameter, and 𝐹 is the probability of non-exceedance. 

Next, the quantile estimates for the GPA using L-moments are given as: 

𝑥𝑇 = 𝜉 +
𝛼

𝑘
 [1 − (1 − 𝐹)]𝑘 (29) 

where 𝜉 is the location parameter, 𝛼 is the scale parameter, 𝑘 >  0 is the shape parameter, and T is the 

return period of formula of probability of non-exceedance F =  1 −  1/T.  

Lastly, the quantile estimates for the GLO using L-moments is: 

𝑥𝑇 = 𝜉 +
𝛼

𝑘
 [1 − {(1 − 𝐹)/𝐹}𝑘] (30) 

where 𝑥 is random variable, 𝜉 is the location parameter, 𝛼 is the scale parameter, and 𝑘 is the shape 

parameter, and F is the probability of non-exceedance. 
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3.3 Performance Measurement  

3.3.1 Accuracy Measure Performance  

Five accuracy performance measures used in this research are the mean absolute error (MAE), the 

mean absolute percentage error (MAPE), the root mean square error (RMSE), the root mean square 

percentage error (RMSPE), the coefficient of determination (𝑅2) and Euclidean distance (𝑑). 

 

𝑀𝐴𝐸 =
1

𝑛
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2𝑛
𝑖=1
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𝑛
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𝑖=1 − 𝐹(𝑦̂𝑖)

2
 (35) 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (36) 

where 𝑛 is the number of observations, F(𝑦𝑖) represented the actual values, F(𝑦̂𝑖) represented the predicted 

values for the 𝑖𝑡ℎ observation, and F(𝑦̅𝑖) represented the mean of the actual values.  

MAE measures the average size of prediction errors by taking the absolute difference between 

predicted and actual values. It is straightforward, treats all errors equally, and is less affected by extreme 

values, making it useful for general error assessment. However, it doesn’t emphasize larger errors, which 

may limit its use in some cases. MAPE shows the average error as a percentage of actual values, making it 

easy to interpret across different data scales. It’s common in forecasting but can be unreliable when actual 

values are near zero, as this causes large or undefined percentage errors. RMSE averages the squared 

differences between predicted and actual values, then takes the square root. It highlights larger errors due 

to squaring, which is helpful when big mistakes are costly. However, it’s sensitive to outliers, which can 

skew results. RMSPE is like RMSE but expresses errors as percentages of the actual values. It is useful for 

comparing performance across datasets with different scales but shares MAPE’s issue with near-zero 

values, making it less reliable in those cases. 𝑅² indicates how much of the variation in the data is explained 

by the model, with values closer to 1 showing a better fit. It is widely used in regression to gauge model 

quality but does not reveal the size of prediction errors and can mislead in complex models. Euclidean 

distance in L-moment ratio diagrams quantifies the separation between two points in a two-dimensional 

space, typically defined by L-moment ratios like L-skewness (𝑡3) and L-kurtosis (𝑡4). In this application, 

it measures how closely a sample’s L-moment ratios match those of theoretical distributions. 

3.3.2 L-Moment Ratio Diagram (LMRD) 

The LMRD, proposed by Hosking and Wallis (1997), is a useful tool for determining an appropriate 

distribution that accurately depicted the catchment’s streamflow series. To create a ratio diagram, one must 

have a straightforward explicit expression for 𝑡4 in terms of 𝑡3 for the chosen probability distributions. The 

following types of polynomial approximations are used: 
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𝑡4  =  𝐴0 + 𝐴1𝑡3 +  𝐴2(𝑡3)2 +  𝐴3(𝑡3)3 +  𝐴4(𝑡3)4 + 𝐴5(𝑡3)5 + 𝐴6(𝑡3)6 +  𝐴7(𝑡3)7

+  𝐴8(𝑡3)8 
(37) 

Table 1. Polynomial approximations of t4 as a function of t3 based on L-moment method 

 GPA GEV GLO 

𝐴0 0 0.10701 0.16667 

𝐴1 0.20196 0.11090 0 

𝐴2 0.95924 0.84838 0.83333 

𝐴3 -0.20096 -0.06669 0 

𝐴4 0.04061 0.000567 0 

𝐴5 0 -0.04208 0 

𝐴6 0 0.03763 0 

𝐴7 0 0 0 

𝐴8 0 0 0 

 

Table 1 provided the coefficients of Ak for the GEV, GPA, and GLO distributions, respectively, based 

on L-moment, where 𝑘 =  0,1, 2, … , 8. By substituted 𝑡3 over the range −0.5 ≤ 𝑡3 ≤ 0.9, yield values of 𝑡4 

for each distribution respectively. The range selected because mostly from fall between the range -0.5 and 

0.9. The constructed LMRD for GEV, GPA, and GLO distributions respectively will be illustrated in Fig. 

2. 

 

Fig. 2. L-Moment Ratio Diagram 

3.3.3 Goodness of Fit Test  

Anderson Darling Test 

The Anderson-Darling (AD) test is a statistical tool designed to evaluate the goodness-of-fit between 

a dataset and a specified distribution, making it particularly valuable for flood frequency analysis. Its 

sensitivity to deviations in the distribution's tails enhanced its effectiveness in analysing extreme events 

like flooding. 

𝐻0: The data follow the specified distribution. 

𝐻1: The data do not follow the specified distribution. 

P-value must be less than 𝛼 to reject the null hypothesis. Hence, AD test statistic is as follows: 

𝐴𝐷 =  −𝑛 −
1

𝑛
∑[(2𝑖 − 1)𝑙𝑛(𝐹(𝑋(𝑖))) + ln(1 − 𝐹(𝑋(𝑛−𝑖+1)))]

𝑛

𝑖=1

 (38) 

where 𝑛 is the sample size and 𝐹(𝑋(𝑖)) is the empirical cumulative distribution function of the ordered 

sample 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛). 
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Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (K-S) test is a nonparametric statistical method widely used to compare a 

dataset with a specified distribution (Hamed & Rao, 2019).  

 

𝐻0: The data follow the specified distribution. 

𝐻1: The data do not follow the specified distribution. 

 

P-value must be less than α to reject null hypothesis. Hence, the test statistic is as follows: 

𝐷𝑁𝑗 = max |𝐹𝑁(𝑥) − 𝐹0(𝑥)| (39) 

where 𝑁𝑗 is the cumulative number of sample events at class limit 𝑗, and the values of 𝐹𝑁(𝑥) are estimated; 

1/𝑘, 2/𝑘, . . ., etc. are the values of 𝐹0(𝑥), where 𝑘 is the number of class intervals. 

4.  RESULTS AND DISCUSSION  

4.1  LMO 

Table 2 presents the initial four elements involved in the computation of L-moments. These 

components are mean (𝑙1), scale (𝑙2), skewness (𝑙3), and kurtosis (𝑙4), provide insights into the statistical 

characteristics of the flood data at this station. 

Table 2. First Four L-Moment Component 

l1 (Mean) l2 (Scale) l3 (Skewness) l4 (Kurtosis) 

4.3715365 1.6051485 0.2264257 0.2397717 

 

The first component 𝑙1 , (4.3715), represents the central tendency, reflecting the average magnitude of 

flood events. The second component 𝑙2, (1.6051), indicates the variability around the mean, demonstrating 

moderate variation in flood magnitudes. The third component 𝑙3, (0.2264) signifies a minor positive 

skewness in the data distribution, suggesting that high-magnitude floods are infrequent but possible. 

Finally, the 𝑙4 (0.2398), reflects light tails in the distribution, implying that extreme flood events are rare. 

4.2  Parameter Estimation 

Table 3 shows the estimated parameters for GEV, GPA and GLO distributions using the LMO method. 

From the table, GPA distribution exhibits the highest 𝛼̂ value (6.0547) among the distributions. The GLO 

distribution has the highest value 𝜉 (4.0027). This value signifies that the flood magnitude modelled by the GLO 

distribution is the highest. The GLO distribution also shows a negative 𝑘̂ value that specifies a bounded tail 

distribution. This value suggests that the model has more frequent events with fewer extremes, which may require 

consistent but moderate flood management strategies (Hamed & Rao, 2019). 

Table 3. Estimated Distribution Parameters using LMO Methods 

Distribution  𝛼̂ 𝜉 𝑘̂ 

GEV 2.41087887 3.08395543 0.04542615 

GPA 6.0547059 0.34982765 0.5055058 
GLO 1.5531227 4.0027214 -0.1410622 

4.2 Gringorten Plotting Position 

Fig. 3 presents the Gringorten Plotting Position graph, comparing observed peak flow measurements 

with predicted values from the GEV, GPA, and GLO distributions. The x-axis represents the Gringorten 
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plotting position probability, while the y-axis shows peak flow discharge in 𝑚3/s. The graph indicates that 

GPA and GLO distributions closely align with observed values, demonstrating a strong fit to the data 

(Samat & Othman, 2023). To assess the accuracy of the plotting positions relative to the fitted distributions, 

the Euclidean distance metric is used to provide a quantitative measure of goodness-of-fit by evaluating 

deviations between observed data and theoretical quantiles from the GEV, GPA, and GLO distributions.  

 

 

Fig. 3. Gringorten Plotting Position 

Table 4. Euclidean Distance of candidate distribution 

Distribution Euclidean Distance 

GEV 7.050357 

GPA 9.196464 
GLO 6.224768 

 

Table 4 summarizes the Euclidean distances between observed and predicted values for the GEV, 

GPA, and GLO distributions using Gringorten plotting positions. The results show that the GLO 

distribution, with the smallest Euclidean distance of 6.2248, is the most suitable model for flood frequency 

analysis at the analysed station. The GEV distribution, with a Euclidean distance of 7.0504, demonstrates 

a better fit than the GPA distribution but is less accurate than the GLO distribution. The GPA distribution, 

having the highest Euclidean distance of 9.1965, is the least suitable model among the three distributions. 

4.3 Performance Measurement 

4.3.1 Accuracy Performance Measures 

Table 5. Test Performance Measurement for Distributions 

Distribution GEV GPA GLO 

MAPE 0.2275573 0.1270529 0.3044755 

MAE 0.536894 0.5826525 0.5396244 

RMSE 0.8882615 1.158646 0.784247 

RMSPE 65.05872 19.93939 99.92112 

R2 0.9180464 0.858907 0.9366164 

 

Regarding performance metrics in Table 5, the GPA distribution shows the lowest MAPE (0.1271), 

indicating that it has the smallest average percentage error, thus providing the most accurate predictions on 

average among the distributions. For MAE, the GEV (0.5369) performs better than the other distributions, 

indicating more accurate absolute estimates. The RMSE values highlight that the GLO distribution (0.7842) 

has the lowest value, indicating it performs best in minimising large prediction errors. For the metric 
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RMSPE, the GPA distribution (19.9394) has the lowest value, which suggests it performs better than GEV 

(65.05872) and GLO (99.9211). Finally, the 𝑅2 values indicate that the GLO distribution (0.9366) explains 

the highest proportion of variance in the data, followed by GEV (0.9180) and the GPA distribution (0.8589). 

4.3.2 L-Moment Ratio Diagram  

Table 6 presents L-moment Ratios (LMR) for a river station in Peninsular Malaysia, capturing key 

hydrological attributes using three LMO statistics: 𝑡2 (L-CV), 𝑡3 (L-skewness), and 𝑡4 (L-kurtosis), which 

describe variability, asymmetry, and tail heaviness, respectively. The 𝑡2 value of 0.3672 indicates moderate 

variability, balancing consistency and dispersion. The 𝑡3value of 0.1411 reflects moderate right skewness, 

suggesting a slightly longer tail on the right side. The 𝑡4 value of 0.1494 indicates moderately heavy tails, 

implying the potential presence of extreme values without being overly pronounced. These LMR statistics 

provide a comprehensive understanding of the hydrological data, enhancing flood prediction models. The 

LMRD for the three distributions is depicted in Fig. 4. 

 

Table 6. LMR 

L-CV (t2) L-Skewness (t3) L-Kurtosis (t4) 

0.3672 0.1411 0.1494 

 

 

Fig. 4. LMRD 

Fig. 4 shows the LMRD depicting the relationship between L-skewness (along the x-axis) and L-

kurtosis (along the y-axis) for the observed data along with three theoretical extreme value distributions: 

GEV, GPA and GLO distributions. Theoretical curves for each distribution are shown in the diagram, and 

the observed data point (0.1494) is plotted at a position determined by its respective L-Skewness and L-

Kurtosis values. 

The observed data point (0.1494) is closest to the curve of the GEV distribution, which implies that 

the GEV model is the most suitable for the data. The observed data show more scatter from the GLO and 

GPA curves. This indicates that both distributions are less accurate in modelling the observed data. The 

major outcome from the LMRD reveals that the GEV distribution fits best for this dataset, and is effective 

in flood frequency analysis, promising in correctly representing the statistical properties of observed data. 

4.3.3 Goodness of Fit Test  

Table 7 presents the p-value from the GOF tests for the GEV, GPA and GLO distributions. In terms 

of GOF, the AD test p-value for GEV (0.3979) indicates the best fit, while GPA has the smallest AD p-
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value (0.000009524), suggesting a poor fit to the data. Similarly, the K-S test p-value further confirms that 

GLO (0.5923) fits the data well, while the GPA distribution (0.1567) performs worse than GEV and GLO. 

Table 7. P-value of GOF Test for Each Distributions 

Distribution GEV GPA GLO 

AD 0.3979 0.000009524 0.3684 
K-S 0.4244 0.1567 0.5923 

4.4 Measurement Ranking  

Table 8 puts the Generalized Extreme Value (GEV) distribution at the forefront as the most suitable 

model for flood frequency model for this study. This can be supported by its outstanding performance in 

the GOF tests, specifically the AD and K-S tests, combined with its good results in other accuracy measures. 

Besides, GEV obtained the highest cumulative rank score in Table 8, further proving its appropriateness 

for this station. By contrast, the GLO and GPA distributions are the least favourable, with their total ranks 

scores being the lowest among the three. The present study concludes that the GEV distribution is the best 

and most appropriate model for the purpose of flood frequency analysis in the river system of Peninsular 

Malaysia. 

Table 8. Rank Score for Distributions 

Distribution GEV GPA GLO 

AD 3 1 2 

K-S 2 1 3 
MAPE 2 3 1 

MAE 3 1 2 

RMSE 2 1 3 
RMSPE 2 3 1 
R2 2 1 3 

Total Score 16 11 15 

 

4.5 Quantile Estimate  

Table 9 demonstrates the GEV distribution's effectiveness in modeling flood magnitudes, showing a 

consistent increase in discharge with longer return periods. For a 10-year period (p = 0.90), the estimated 

flood discharge is 8.2412 𝑚3/𝑠, rising to 11.7045 𝑚3/𝑠, for 50 years (p = 0.98) and 13.0923 𝑚3/𝑠 for 100 

years (p = 0.99). Compared to other distributions, GEV provides slightly lower estimates than GLO for 

shorter periods but higher than GPA, while offering more conservative predictions for longer periods, such 

as 100 years. This makes GEV particularly suitable for applications requiring conservative flood risk 

assessments, ensuring realistic and consistent predictions. Its reliability across return periods underscores 

its value in long-term flood risk management and infrastructure design capable of withstanding extreme 

hydrological events. 

Table 9. Quantile Estimate Based on Return Periods 

Return Period 

(Years) 

Probability (p) Estimated Flood Discharge (m3/s) 

GEV GPA GLO 

10 0.90 8.241226 8.228045 8.382849 
50 0.98 11.704503 12.111101 10.652548 

100 0.99 13.092262 14.074898 11.153635 
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5.  CONCLUSION 

This research presents a comprehensive framework for understanding and managing flood risks in 

Peninsular Malaysia, a region highly vulnerable to monsoon-induced flooding. By employing advanced 

statistical methods, including L-moments and extreme value distributions (GEV, GPA, and GLO), the study 

presents a robust model for predicting flood magnitude and frequency. The findings highlight the efficiency 

of these techniques in analysing long-term records, estimating return periods, and identifying suitable 

probability distributions, with the Generalized Extreme Value (GEV) distribution emerging as the most 

reliable model. The GEV distribution consistently outperforms others in goodness-of-fit tests and 

accurately predicts flood magnitudes, providing valuable quantile estimates for 10-, 50-, and 100-year 

return periods at 8.24 𝑚3/𝑠, 11.70 𝑚3/𝑠, and 13.09 𝑚3/𝑠, respectively. The research emphasizes the 

importance of integrating these findings into regional planning and flood management strategies to address 

challenges from urbanization and climate change, ultimately improving infrastructure resilience and 

community preparedness. 

The study offers several recommendations to enhance flood management and preparedness. 

Policymakers and engineers are advised to prioritize the use of the GEV distribution for designing flood 

control structures, as it is identified as the most effective model for extreme flood events. Utilizing quantile 

estimates in high-risk areas can aid in targeted strategies and efficient resource allocation. Collaboration 

between government bodies and academic institutions is crucial for improving real-time streamflow data 

accuracy, which will enhance the precision of flood frequency models and future flood management efforts. 

Future research should apply the L-Moment method to regions with varying hydrological conditions or 

limited data to validate its robustness and adaptability. Expanding the analysis to other river systems and 

regions in Malaysia is also recommended, particularly to assess the impacts of climate change on flood 

magnitudes and return periods, thereby providing critical insights for scenario planning and improving 

preparedness strategies. 
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