volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

BANDWIDTH OPTIMIZATION IN MULTI-ACCESS POINT NETWORKS USING ADAPTIVE LOAD BALANCING BASED ON USER DISTRIBUTION

MUHAMMAD HAIQAL MOHD YAHYA

College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, 2022753307@student.uitm.edu.my

NOOR ASHITAH ABU OTHMAN*

noor2106@uitm.edu.my

Article Info Abstract

The research project "Bandwidth Optimization in Multi-Access Point Networks using Adaptive Load Balancing Based on User Distribution" establishes a dynamic bandwidth allocation system that depends on user numbers per access point (AP). The bandwidth distribution process will follow a ratio which splits 30% to AP1 and 70% to AP2 to achieve equitable resource distribution. The method works to solve wireless network bottlenecks along with fixing uneven bandwidth distribution. The project achieves its performance optimization through its implementation of weighted load balancing and dynamic bandwidth allocation methods. Network automation tasks run on Python but the web-based network data visualization relies on HTML. This system creates essential foundations that lead to improved bandwidth distribution stability in high-demand network environments through real-time monitoring and adaptive load balancing mechanisms.

Received: March 2025 Accepted: September 2025

Available Online: November 2025

Keywords: Bandwidth Allocation Based on the Number of Users

INTRODUCTION

The traditional methods of distributing fixed bandwidth often struggle to accommodate the evolving demands of modern, bandwidth-intensive applications (Alireza et al., 2021). This inadequacy results in either congestion or underutilization, ultimately diminishing the user experience and wasting resources. Therefore, to guarantee optimal resource utilization and quality of service (QoS) for end users, there is a pressing requirement for adaptive bandwidth allocation techniques capable of adjusting bandwidth distribution in real-time according to prevailing network conditions and application needs (Zhang et al., 2021). Employing an adaptive bandwidth access point system ensures a better environment for users due to its

PCMJ

volume 3 [November, 2025]

e-ISSN: 3030-6728 Website: fskmjebat.uitm.edu.my/pcmj

dynamic bandwidth allocation. For example, students in universities often rely on provided

networks for assignments, but performance discrepancies occur when one user experiences

faster access due to fewer users connected to the same access point (Jessica, 2022). This

research aims to solve these issues and improve connectivity, especially in high density areas.

Problem Statement

In dynamic user environments, fluctuating connections make stable bandwidth

distribution challenging. Traditional static methods are inefficient in adapting to real-time

changes in user density and demand. Performance issues arise when users transition between

access points, causing congestion, slow speeds, and unfair bandwidth distribution. An adaptive

system is required to monitor and dynamically adjust bandwidth, ensuring balanced and

efficient user experiences (Zhang & Wang, 2023). Current bandwidth allocation through access

points instead of user numbers causes bottlenecks and hardware strain (Soudani et al., 2012).

Overloaded access points slow down network speeds, increase latency, and risk long-term

equipment damage. Implementing flexible bandwidth distribution helps manage traffic

efficiently and ensures balanced access for all.

Objectives and Scope

This project addresses these issues by developing a real-time monitoring controller for

dynamic bandwidth distribution among access points. Combining dynamic allocation with

round-robin load balancing in a Peer-to-Peer Network optimizes performance, improves traffic

distribution, and enhances user experience (Zhang & Wang, 2023). The project sets up a

hierarchical wireless network, implements load balancing via a central controller, and

compares performance metrics like latency and throughput with and without load balancing.

The test bed includes five simulated users, representing typical small office or home

environments. Cost-effective technology, including a laptop controller and access points,

powers the implementation. The system dynamically allocates bandwidth based on user

activities, ensuring fair distribution and efficient resource use.

175

volume 3 [November, 2025]

e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

Study Significance

PCMJ

The adaptive system minimizes bandwidth usage in crowded environments, preventing

congestion and poor performance. It guarantees consistent connectivity by dynamically

adjusting bandwidth during peak usage. This ensures reliable internet access, particularly in

regions where connectivity is crucial. Finally, the system improves user experience by

providing seamless Wi-Fi access, even in high-demand areas like computer labs and offices,

ensuring smooth browsing, streaming, and work, with higher throughput and capacity.

LITERATURE REVIEW

This part represents the literature review section. It serves as a key section in a

manuscript, summarizing past research and relevant studies that support the current work.

Network Set Up

A network setup refers to the arrangement and configuration of devices within a

network to enable communication and resource sharing. This setup can follow different

architectures, such as master-slave, where a central device (master) controls and manages other

devices (slaves), or peer-to-peer, where devices communicate and share resources directly

without a central controller.

Master-Slave Architecture

The master-slave architecture is a design where one central component (the master)

controls and manages one or more subordinate components (the slaves). The master assigns

tasks, coordinates operations, and oversees workflow, while the slaves carry out specific tasks

and report back to the master. Commonly used in distributed systems, databases, and parallel

computing, this architecture improves performance, ensures coordination, and balances

workload by distributing responsibilities efficiently (Li & Ho, 2019).

176

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

Peer-to-Peer Architecture

The peer-to-peer (P2P) network architecture is a decentralized system where peers directly exchange resources and information without relying on a central server. Each peer shares equal responsibilities, acting as both client and server based on needs. Unlike client-server models, P2P networks allow fast resource distribution, efficient file transfers, and increased computational power and bandwidth by eliminating single points of control. Examples include BitTorrent for file sharing and Bitcoin for peer-verified transactions. P2P systems range from self-organized networks to more structured systems like Distributed Hash Tables (DHTs), supporting collaborative computing, content distribution, and decentralized decision-making (Hasimoto-Beltran, Lopez-Fuentes, & Vera-Lopez, 2019).

Comparison of Network Set Up

Table 1 Comparison of Network Set Up

Network Set Up	Characteristics	Advantages	Disadvantages
Master-Slave	Architecture: One master	Simplicity: Easy to	Scalability: Limited by
technique	node in centralized control	understand and	the capacity of the
	governs more than one slave	implement.	master node, which can
	node.	Centralized Control:	become a bottleneck.
	Communication: such that	Easier to manage and	Single Point of Failure:
	the master node sends orders	update the network from a	If the master node fails,
	to the slave nodes, which in	single point.	the entire system can be
	turn send information back.	Deterministic	disrupted.
	Complexity: It is easy to	Behaviour: Predictable	
	develop and oversee.	and consistent	Limited Flexibility:
		performance	Less adaptable to
			dynamic network
			conditions

PCMJ

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

Peer-To-Peer	Architecture: It is a network	Scalability: Highly	Complexity: More
Network	where each node can serve	scalable as each node	challenging to manage
Architecture	both as a server and a client in	contributes resources to	and coordinate,
	a decentralized manner.	the network.	especially for tasks
			requiring centralized
	Communication: There is no	Redundancy and	control.
	central controller in direct	Resilience: No single	Consistency: Ensuring
	communication among peers.	point of failure; the	consistent network
	Complexity: It is more	network can adapt to node	behaviour can be
	complex because of	failures.	difficult in a fully
	decentralized coordination	Resource Utilization:	decentralized system.
	and communication necessity.	Efficient utilization of	
		network resources	
		through direct peer-to-	
		peer communication.	
			•

Load Balancing

Load balancing in network administration ensures that network traffic is distributed evenly across multiple access points, optimizing bandwidth usage and improving performance. It uses real-time data to allocate resources efficiently, reducing delays, preventing congestion, and enhancing system reliability. Strategies like bandwidth limiting, traffic shaping, and dynamic bandwidth allocation help the network adapt to changing user demands, ensuring a smooth and efficient connectivity experience (Arikuma & Kitano, 2021).

Weighted Round Robin Load Balancing

The Weighted Round Robin load balancing method distributes network traffic across multiple servers or access points (APs) based on their capacities, such as processing power, memory, or bandwidth. Unlike standard Round Robin, which treats all servers equally, Weighted Round Robin assigns different priorities or weights to each server or AP. Higher-capacity devices receive more traffic, ensuring efficient resource allocation for demanding tasks. This method enhances performance by preventing device overload, minimizing delays, and allowing networks to adapt to traffic changes without manual intervention (Ramesh Babu, 2023).

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

Least Connections Load Balancing

Least Connections load balancing distributes incoming network traffic by directing new connections to the server or access point (AP) with the fewest active connections. The load balancer continuously monitors active connections and dynamically allocates requests to prevent any single server or AP from becoming overloaded. This method improves system performance by minimizing bottlenecks, maximizing resource utilization, and ensuring even workload distribution. It is especially useful when traffic patterns fluctuate, offering scalability and resilience by automatically adapting to changing loads or server outages (Bhattacharya, 2022).

Comparison of Load Balancing Method

Table 2 Comparison of Load Balancing Method

Load Balancing	Description	Advantages	Disadvantages
Weighted Round	An extension of Round	More efficient than Round	Still doesn't account for
Robin Load	Robin.	Robin for heterogeneous	real-time server load or
Balancing Servers are assigned		server environments.	response times.
	weights based on their	Allows for proportional	Requires manual
	capacity.	distribution of requests	configuration of weights,
	Requests are distributed	according to server	which may need
	based on these weights.	capabilities.	adjustments over time.
Least Connections	Distributes requests to	Better load distribution	Can become inefficient if
Load Balancing the server with th		than Round Robin in	some connections are long-
	fewest active	environments with variable	lived while others are short-
	connections.	request processing times.	lived.
	Aims to evenly	Adapts to real-time server	Does not account for server
	distribute the load based	load.	performance or response
on current server load.			time directly

PCMJ

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

Bandwidth Management

Bandwidth management techniques refer to methods used to monitor, control, and optimize the distribution of network bandwidth among devices and applications. These techniques ensure efficient use of available bandwidth, prevent network congestion, and improve overall performance by prioritizing critical traffic, limiting non-essential usage, and dynamically allocating resources based on real-time demand. Common techniques include dynamic bandwidth allocation and traffic shaping, all aimed at providing a stable and reliable network experience.

Dynamic Bandwidth Allocation

Dynamic bandwidth allocation is a network management technique that adjusts bandwidth distribution in real time based on current usage patterns and operational needs. Unlike static allocation, which remains fixed until manually changed, this method continuously monitors network conditions, user activity, and application demands to dynamically direct bandwidth where it is most needed. It optimizes network performance by prioritizing critical applications during peak times, reducing delays, and preventing congestion. This approach enhances network flexibility and responsiveness, allowing administrators to efficiently manage resources and improve user satisfaction (Huang et al., 2019).

Traffic Shaping

Traffic shaping is a network management technique that controls data flow to improve efficiency and prevent congestion by regulating transmission rates based on policies or quality of service (QoS) parameters. It ensures fair bandwidth distribution among users and applications by prioritizing critical services like VoIP and video streaming while limiting less essential activities like file downloads. Traffic shaping helps prevent sudden data surges from overwhelming network capacity, maintaining stable performance and reliable, responsive network services even during high demand (Li et al., 2020).

volume 3 [November, 2025] e-ISSN: 3030-6728

e-ISSN: 3030-6728 Website: fskmjebat.uitm.edu.my/pcmj

Comparison of Bandwidth Management

Table 3 Comparison of Bandwidth Management

Bandwidth	Description	Advantages	Disadvantages
Management			
Dynamic	Based on the current network	Efficiency: Maximizes the	Complexity: Requires
Bandwidth	circumstances and usage	use of available bandwidth	sophisticated algorithms and
Allocation	trends, the allocation of	by reallocating it based on	real-time monitoring
	bandwidth to various users	demand.	Overhead: May introduce
	or apps is adjusted by the	Flexibility: Can adapt to	additional processing
	Dynamic Bandwidth	changing network conditions	overhead
	Allocation in real time	and user requirements.	Stability: Frequent
	aiming at optimizing the	Fairness: Ensures that all	reallocation can cause
	general performance of a	users get a fair share of	fluctuations in network
	network through its	bandwidth, especially in	performance, which may not
	continuous redistribution of	high-traffic scenarios.	be ideal for certain
	bandwidth.		applications.
Traffic shaping	Traffic shaping or Packet	Predictability: Provides	Latency: Can introduce
	shaping refers to managing	consistent network	delays, as traffic is held back
	the data being sent and	performance by smoothing	to smooth out bursts.
	received within a network to	out traffic bursts.	Complex Configuration:
	establish an even and	Prioritization: Ensures that	Requires careful planning
	expected flow of traffic.	critical applications	and configuration to achieve
	Instead, certain forms of	Control: Allows network	desired outcomes.
	traffic are given precedence,	administrators to enforce	
	and the quantity of	policies and manage traffic	Potential Inefficiency: May
	bandwidth available for	effectively.	lead to underutilization of
	distinct applications is		available bandwidth if not
	controlled.		properly configured.

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

Related Project

In this part, there will be a project or past work which is SDN-Based Load Balancing to compare them with this project.

SDN-Based Load Balancing

SDN-based load balancing for wireless networks improves network performance by separating the control plane, which makes decisions, from the data plane, which forwards traffic. SDN controllers manage dynamic wireless environments by monitoring network conditions and distributing resources based on current needs. This centralized approach optimizes resource utilization, reduces congestion, and enhances quality of service. It allows real-time adjustments, flexible scalability, and supports emerging technologies like 5G and IoT that require fast responses and efficient management (Adil et al., 2020).

Comparison of Related Project

Table 4 Comparison of Related Projects

Aspect	SDN-Based Load Balancing	Bandwidth Optimization in Multi-Access	
		Point Networks using Adaptive Load	
		Balancing Based on User Distribution	
Goal	Centralized control of network traffic to	Optimize bandwidth allocation and load	
	reduce congestion and optimize	balancing at access points (APs) based on	
	performance.	real-time user demand.	
Use of SDN	SDN controller manages resource	Uses SDN to dynamically allocate bandwidth	
	allocation across network elements, such	and balance load between APs in real-time.	
	as APs and base stations.		
Adaptive	Yes, resources are allocated based on	Yes, dynamically adjusts AP bandwidth	
Bandwidth	current network state and traffic patterns.	allocation based on user load and specific	
Allocation		network requirements.	
Focus on QoS	Indirect focus, QoS is enhanced through	Direct focus; seeks to maintain fair bandwidth	
	load balancing and congestion reduction.	allocation for optimal user experience and	
		stable QoS in a high-traffic network.	
Unique	Expands to multi-layered networks,	Tailored for access point-based adaptive	
Features	managing various network elements	bandwidth, focused on user load and real-time	
	beyond just APs.	network demands, suitable for IoT, 5G, and	
		user-centric applications.	
Application	General wireless networks, 5G, IoT	Wireless environments with fluctuating user	
Areas	environments with varying traffic	demand, AP-based load balancing for IoT, and	
	patterns.	adaptive services.	

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

METHODOLOGY

There are six phases for completing the Bandwidth Optimization in Multi-Access Point Networks using Adaptive Load Balancing Based on User Distribution. Firstly, information gathering which is to research on the article that relates to the project. Secondly, planning which to Discover the hardware and software requirement. Thirdly, the design phase is to design the network setup, and the technique use. Fourth, development which implements the code into the hardware. Fifth, the testing phase is to test the success rate of the project. Lastly, the documentation phase is to compile the report.

The network set up used is peer-to-peer architecture which is suitable for this project to achieve its objectives. Next, the weighted round-robin load balancing is chosen as it is suitable to balance the load based on the number of users on its devices. The bandwidth management used for this project is dynamic bandwidth allocation which match the objectives of this project as its used a central controller to calculate and distribute the bandwidth.

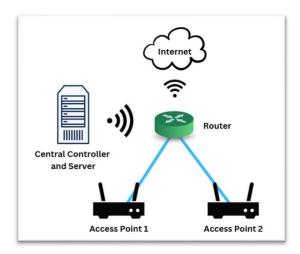


Figure 1 Peer-to-Peer Architecture

Figure 1 shows the physical diagram which used the peer-to-peer architecture network to make sure this project runs as its plan. Figure 2 shows the system flow of the project of how the central controller and the access point (AP) communicate to collect the number of users and how the calculation of the bandwidth distribution on each AP.

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

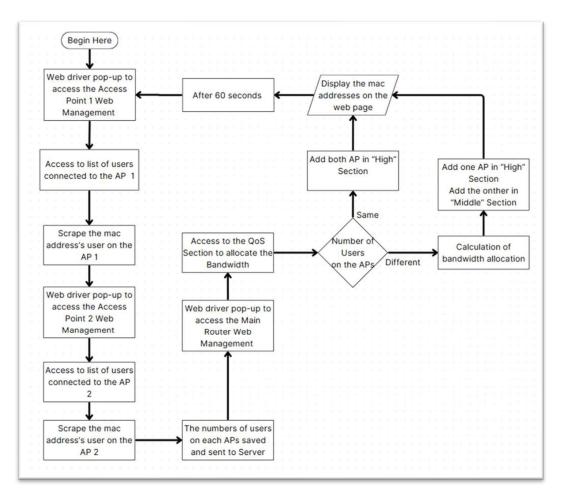
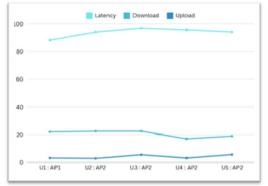


Figure 2 System Flow

volume 3 [November, 2025] e-ISSN: 3030-6728


Website: fskmjebat.uitm.edu.my/pcmj

RESULT AND DISCUSSION

The result of the load balancer test is discussed in this part. The latency and throughput are tested on testmy.net as it can test both parameters.

Table 5 Result of Test 1

Users Based on AP		AP1	AP2
		U1	U2, U3, U4, U5
Result	Without Load	The throughput of the users is not equal and have a huge	
	Balancing	difference	
	With Load	The throughput of the users is equal with a slight difference	
	Balancing		

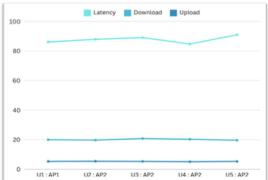
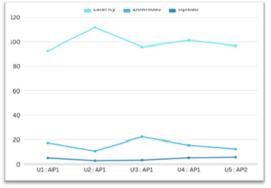


Figure 3 Before Load Balancing

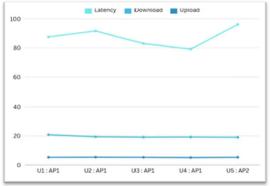
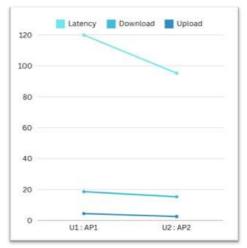

Figure 4 After Load Balancing

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

Table 6 Result of Test 2

Users based on AP		AP1	AP2
		U1, U2, U3, U4	U5
Result	Without Load	The throughput of the users is not equal and have a huge	
	Balancing	difference	
	With Load	The throughput of the users is equal with a slight difference	
	Balancing		

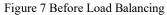

Figure 5 Before Load Balancing

Figure 6 After Load Balancing

Table 6 Result of Test 3

Users	Based on AP	AP1	AP2
		U1	U2
Result	Without Load Balancing	The throughput of the users is not equal and have a slight difference	
	With Load Balancing	The throughput of the users is equal	

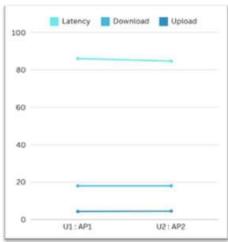


Figure 8 After Load Balancing

PCMJ

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

CONCLUSION

The Bandwidth Optimization in Multi-Access Point Networks using Adaptive Load Balancing Based on User Distribution led to satisfying results as it united advanced networking concepts between load balancing and dynamic bandwidth allocation. The combination of weighted load balancing with round-robin allocation distributed network bandwidth proportionally to current user numbers to maximize network operational effectiveness. Network performance became accessible in real-time through a central controller system that managed bandwidth and utilized Flask for server-side solutions to establish centralized control. The system demonstrated technical excellence through its ability to adapt to changing network conditions through its combined approach of multiple user data integration from different access points.

PCMJ

volume 3 [November, 2025] e-ISSN: 3030-6728

Website: fskmjebat.uitm.edu.my/pcmj

REFERENCES

- Adil, M., Khan, R., Ali, J., Roh, B. H., Ta, Q. T. H., & Almaiah, M. A. (2020). Software-defined networking (SDN) for effective load balancing in wireless networks: A comprehensive survey. IEEE Access, 8, 190447-190467. https://doi.org/10.1109/ACCESS.2020.3036776
- Alireza, Mojahed., Lawrence, A., Bergman., Alexander, F., Vakakis. (2021). Generalization of the Concept of Bandwidth. arXiv: General Physics
- Arikuma, Takeshi., Kitano, Takatoshi. (2021). Load balancing system, load balancing device, load balancing method, and computer-readable medium.
- Huang, L., Feng, X., Zhang, C., Qian, L., & Wu, Y. (2019). Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. *Digital Communications and Networks*, 5(1), 10-17.
- Hasimoto-Beltran, R., Lopez-Fuentes, F. D. A., & Vera-Lopez, M. (2019). Hierarchical P2P architecture for efficient content distribution. *Peer-to-Peer networking and applications*, 12, 724-739.
- Jessica, Keiser. (2022). WiFi at University: A Better Balance between Education Activity and Distraction Activity Needed.. Computers and education open, doi: 10.1016/j.caeo.2021.100071
- Li, J., Xue, K., Wei, D. S., Liu, J., & Zhang, Y. (2020). Energy efficiency and traffic offloading optimization in integrated satellite/terrestrial radio access networks. *IEEE Transactions on Wireless Communications*, 19(4), 2367-2381.
- Li, D., & Ho, C. N. M. (2019). A delay-tolerable master–slave current-sharing control scheme for parallel-operated interfacing inverters with low-bandwidth communication. *IEEE Transactions on Industry Applications*, 56(2), 1575-1586.
- Soudani, A., Divoux, T., & Tourki, R. (2012). Data traffic load balancing and QoS in IEEE 802.11 network: Experimental study of the signal strength effect.
- Zhang, Y., & Wang, X. (2023). Adaptive Bandwidth Allocation in Dynamic Wireless Networks. *IEEE Transactions on Wireless Communications*, 22(3), 1500-1512.
- Zhang, S., Wang, C., Jin, Y., Wu, J., Qian, Z., Xiao, M., & Lu, S. (2021). Adaptive configuration selection and bandwidth allocation for edge-based video analytics. *IEEE/ACM Transactions on Networking*, 30(1), 285-298.