
1 

 

Simulation Study of 4-bit and 8-bit Kogge Stone 

Parallel Prefix Adder Circuit Characteristics Using 

SILVACO 

 

Siti Rohaya binti Ya’acob @ Selamat 

Faculty of Electrical Engineering (Electronic) 

Universiti Teknologi MARA 

Shah Alam, Malaysia 
rohayaacob@gmail.com 

 

 

 
Abstract— This paper describes the design of Radix-2, Radix-3 

and Radix-4 of 4-bit and 8-bit Kogge Stone Parallel Prefix Adder 

(KSPPA) architecture. The objective is to study and investigate 

the effects of these different radix to the various characteristics of 

KSPPA in terms of logical depth, number of transistors used, 

propagation delay, and average power consumption. The 

simulation study is carried out by Gateway SILVACO EDA 

Tools software and the design is mapped for a 0.18µm CMOS 

technology with 1.8V of supply voltage. The result shows that for 

4-bit KSPPA, the Radix-4 is the best design while Radix-2 is the 

worst design, as Radix-4 reduced logical depth by 50%, reduced 

transistors used as much as 23%, 3% faster, and lower average 

power consumption by 1.2%. Then for 8-bit KSPPA, Radix-3 is 

the best design while Radix-2 still the worst design, as Radix-3 

reduced logical depth by 50%, reduced transistor used as much 

as 18%, 9% faster, and lower average power consumption by 
6.6%. 
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I. INTRODUCTION 

In VLSI implementation, adders are critically an important 

element in processor chips because they are used in floating-

point arithmetic units, arithmetic logic units (ALU), and 

address generation units [1]. Adders delay can significantly 

affect the maximum operating speed of these processors. 
Therefore, even a small improvement in the design of an adder 

can result in significant improvements in the performance of 

the entire processor. This has result a large number of adder 

architectures, which include parallel prefix adder architecture. 

The literature describes the parallel prefix adder are the most 

suitable for VLSI implementation due to their regular structure 

and efficient design [2, 3, 4]. In parallel prefix adder structure, 

the logical depth, k is determine by logr n, where n is the bit 

width of the input signals and r is radix. Radix represents the 

total fan in into gray cell and black cell in parallel prefix adder 

architecture. 
 

There are several types of parallel prefix adders; they are 

Ladner-Fischer, Kogge-Stone, Brent-Kung, Han-Carlson, 

Knowles and Sklansky [5, 6]. A recent comparison among 

these architectures has been done using logical effort 

calculation. As the result, the Kogge-Stone is considered as 

the fastest design possible however requires larger area and 

consumed more power [5]. As the requirement of the adder 

design are; primarily fast and secondarily efficient in terms of 

power consumption and chip area [7], Kogge-Stone 
architectures is focused in this paper. This paper describes the 

simulation study of 4-bit KSPPA and 8-bit KSPPA by using 

radix-2, radix-3 and radix-4 design. The number of 2, 3 and 4 

in the radix design representing the maximum fan-in that are 

allowed into the gray cell and black cell in each radix design 

respectively [7, 8]. The objective is to study and investigate 

the effects of different radix to the logical depth, number of 

transistors used, propagation delay, and average power 

consumption of Kogge-Stone architecture. The simulation 

study is carried out by Gateway SILVACO EDA Tools 

software and the design is mapped for a 0.18µm CMOS 

technology with 1.8V of supply voltage. All design 
constraints, such as output load (C=1pF, R=500kΩ) and 

transistor ratio, were held constant for each architecture. It was 

expected that radix-4 design would come out as the best 

design as revealed in [8].  

II. THEORY AND DEFINITION 

The complete functioning of Kogge-Stone parallel prefix 

adder can be easily comprehended by analyzing it in terms of 

three distinct part: Pre-processing, prefix carry tree, and post-

processing [1, 9, 10]. 

A. Pre-processing 

This step involves computation of carry generate bits 

   and carry propagate bits    corresponding to each pair 

of bits in A and B. These signals are given by the logic 

equations below: 

 

                                                                 (1) 
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                             (2) 

where; 

         which              . 

 . and   denote the logical AND and exclusive-
OR operations respectively. 

 

The combination of equation (1) and (2) represents as the 

half adder. 

B. Prefix Carry Tree 

This part differentiates Kogge-Stone parallel prefix 

adder from other adders. This step involves computation 

of group propagate bit       and group generate bit      to 

compute carry signals    corresponding to each bit, which 

is given by the logic equation below: 

 

                                                  (3) 

                                                       (4)       

                                 (5) 

where:  

 

 

 

 

Or else,    can be computes by: 

                         (6) 
 

C. Post-Processing 

This is the final step which involves computation of sum 

bits   . Sum bits are computed by the logic given below:  

                         (7)     
 

The input carry, Cin of the adder is assumed to be 0. 

 

These three parts is illustrated in the block diagram in Fig. 

1 [5].   and   represent the   bit operands.   and   represent 

the carry propagate bits and carry generate bits. These signals 

are utilized to compute the carry    through the recurrence 

equation given in (6).  

 
Figure 1. Block Diagram of Parallel Prefix Adder. 

The prefix carry tree is an interconnection of a number of 

           and        cells.       cells compute      and 

     as defined in (3) and (4) respectively.      cells 

computes only      [5].        cells is optional either to put 

in or can contain no cells.  The radix-2, radix-3 and radix-4 

      cell and      cell that represent fan-in of two, three 

and four respectively, and        cell are illustrated in Fig. 2.  

 

 
Figure 2. (a)radix-2 (b)radix-3 (c)radix-4 of black cell, (d)radix-2 (e)radix-3 

(f) radix-4 of      cell, and (g)        cell. 

 

III. 4-BIT KOGGE STONE PARALLEL PREFIX ADDER 

This study focus on the effect of different radix to the 

characteristics of 4-bit KSPPA and 8-bit KSPPA in terms of 

logical depth, number of transistors used, propagation delay and 

average power consumption. So upon the completion of this 

study, there are five main step are involved. This section 

describes the 4-bit KSPPA implementation first. 

 

The first step is by doing theoretical analysis on each stage 

of parallel prefix adder and determining the radix design 
algorithm. At this stage, all the theoretical computation is done 

in order to make sure theoretical equations that are used and the 

comprehension of 4-bit KSPPA is right. The second step is the 

development on the mathematical model of 4-bit KSPPA. At 

this stage all the basic gates and cells needed is determine. The 

basic gates that are required are; OR, AND, NOT, and 

exclusive-OR. The cells that are required are; black, gray, 

buffer, sum and half adder. 

 

The third step is the most complex step, which is the 

implementation of all the basic gates and cells required. At this 

stage, the process is divided into two main parts: basic gates 
implementation and cells implementation. 

 

A. Basic Gates Implementation 

The gates that are implemented are AND, OR, NOT, and 

exclusive OR [6]. The symbol and circuit for these gates is 
shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 respectively. 
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1) AND gate: AND is implemented by the combination 

of NAND and NOT. 

 
(a) 

 
(b) 

Figure 3. (a) symbol and (b) circuit of AND 

 

2) OR gate: OR is implemented by the combination of 

NOR and NOT. 

 
(a)  

 
(b) 

 

Figure 4. (a) symbol and (b) circuit of OR 

3) NOT gate 

 
(a) 

 
(b) 

 

Figure 5. (a) symbol and (b) circuit of NOT 

 

4) Exclusive-OR 

 
(a) 

 
(b) 

Figure 6. (a) symbol and (b) circuit of exclusive-OR 

B. Cells Implementation 

There are five cells are implemented in this section. The 

cells are black, gray, buffer, sum and half adder. As different 

black cell and gray cell is used for different radix design, the 

process of black cell and gray cell implementation is divided 

into three parts, which is for radix-2, radix-3 and radix-4 design 

respectively. However there are cells used that are same for all 

the radix design. The cells are half adder, buffer and sum. Half 

adder is used in pre-processing part while sum is used in post-

processing part. Buffer contained of two series NOT, half adder 

contained AND, exclusive-OR and buffer, and sum contain only 

exclusive-OR.  

 

1) Radix-2 Design: black  cell and gray cell for radix-2 

design is named PP2 (parallel prefix-2) and GPP2 (generate 

parallel prefix-2) respectively.  The transistor level for 

generate PP2 and GPP2 cell is shown in Fig. 7 and Fig. 8 

respectively. The PP2 cell realize the following logic funtions 

for the generate output. 

                                              (8) 

                                  (9) 

a) PP2 

Figure 7. Transistor level of radix-2 PP2 
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b) GPP2 

 
 

Figure 8. Transistor level of radix-2 GPP2 

2) Radix-3 design: In radix-3, black cell is named PP3 and 

gray cell is named GPP3. For gray cell, radix-3 used both 

GPP2 and GPP3. The PP3 cell realize the following logic 

funtions for the generate output. 
 

                                                (8) 

                                               (9) 

 

The transistor level for generate PP3 and GPP3 cell is shown 

in Fig. 9 and Fig. 10 respectively.  
 

a) PP3 

Figure 9. Transistor level of radix-3 PP3 

 

b) GPP3 

 
Figure 10. Transistor level of radix-3 GPP3 

 

3) Radix-4 design: In radix-4, gray cell is named GPP4. 

No black cell is  used. For gray cell, radix-4 used GPP2, 

GPP3, and GPP4. The GPP4 cell realize the following logic 

funtions for the generate output. 
 

                                                 (10) 
 
The transistor level for generate GPP4 cell is shown in Fig. 11 

below. 

 
 

 
 

Figure 11. Transistor level of radix-4 GPP4 

 

The next step taken after implementation process is the 
integration process. At this stage, the implemented cells that 

are required to develop the full circuit of radix-2, radix-3 and 

radix-4 design of the 4-bit KSPPA is integrated 

correspondingly. The result that is obtained at this stage is the 
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total number of transistors used and the logical depth for each 

radix design of the 4-bit KSPPA. The result will be detailed 

described in section V. Lastly, the final step in this study is the 

simulation process. At this stage, each of radix design of the 4-

bit KSPPA is simulate. The simulation result that is focus on 

is the propagation delay and the average power consumption 
for 4-bit KSPPA for each radix design. The result also will be 

detailed described in section V. 

 

IV. 8-BIT KOGGE STONE PARALLEL PREFIX ADDER 

This section described the implementation of full circuit 

design of radix-2, radix-3 and radix-4 of the 8-bit KSPPA. The 

objective is to predict the KSPPA characteristics in terms of 

logical depth, number of transistors used, propagation delay 

and average power consumption for higher bit width. The 

methods taken for 8-bit KSPPA implementation is the same as 

4-bit KSPPA implementation. All radix design uses the same 

black and gray cell as in 4-bit KSPPA. The only different is, 
black cell (PP4) is used for radix-4 8-bit KSPPA 

implementation. The PP4 cell realizes the following logic 

functions for the generate output: GPP4 as in equation (10), 

and 

                    (11) 

 

The results that obtained in both implementation process 

and simulation process will be detailed described in section V.  

 

V. RESULT AND DISCUSSION 

This section is presenting all the results obtained from this 

study. There are two parts in presenting the result, first part is 

the result from implementation and second part is the result 

from the simulation. 

A. Implementation Result 

The results presented in this part are; the radix tree, the 
logical depth and the number of transistors used for each radix 

design of the 4-bit and 8-bit KSPPA respectively.   

 

The figures of radix-2, radix-3 and radix-4 tree of 4-bit 

KSPPA are shows in Fig. 12, Fig. 13 and Fig. 14 

correspondingly. Based on these figures, it shows that Radix-2 

tree used two PP2 and three GPP2. Radix-3 tree used one PP3, 

one GPP3, and two GPP2. Radix-4 tree used one GPP4, one 

GPP3 and one GPP2. For buffer cells, the entire radix tree 

used the same amount that is four. 

  

Fig. 15, Fig. 16 and Fig. 17 shows the radix-2, radix-3 and 
radix-4 tree of the 8-bit KSPPA respectively. Based on these 

figures, it shows that radix-2 tree used ten PP2, seven GPP2 

and seven buffer. Radix-3 used five PP3, three GPP3, four 

GPP2 and four buffer. Radix-4 used four PP4, one GPP4, one 

GPP3, five GPP2 and five buffer. 

 

 

 
Figure 12. Radix-2 tree of 4-bit KSPPA 

 

 

 
Figure 13. Radix-3 tree of 4-bit KSPPA  

 

 

 

 
Figure 14. Radix-4 tree of 4-bit KSPPA  
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 Figure 15.  Radix-2 tree of 8-bit KSPPA  

In better understanding on the computation process of the 

number of transistors used, all the cells count in each radix 

tree of 4-bit and 8-bit KSPPA tabulated in Table I, II and III, 

representing radix-2, radix-3 and radix-4 respectively. Table 

IV is the summarization of these tables. 
 

TABLE I.  TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-2 

 
 

 

 

 

 

TABLE II.  TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-3 

 

 

Figure 16. Radix-3 tree of 8-bit KSPPA 

 

TABLE III.  TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-4 

 

 

 

 

 

Based on Table IV, it shows for 4-bit KSPPA, radix-4 used 

least transistors while radix-2 used highest transistors. The 

percentage of transistors reduced by radix-4 than radix-2 is 

23%. Then for 8-bit KSPPA, it shows that radix-3 uses least 

transistors and radix-2 remained uses highest transistors. By 

radix-3, the percentage reduced is as much as 18%. 

TABLE IV.  NUMBER OF TRANSISTORS USED 

 

Cell number of transistor 

in each cell 

Amount of cells used 

4-bit KSPPA 8-bit KSPPA 

PP2 14 2 10 

GPP2 8 3 7 

buffer 4 4 7 

Total number of transistor used 68 224 

 

Cell number of transistor 

in each cell 

Amount of cells used 

4-bit KSPPA 8-bit KSPPA 

PP3 20 1 5 

GPP3 12 1 3 

GPP2 8 2 4 

buffer 4 4 4 

Total number of transistor used 64 184 

 

Cell number of transistor 

in each cell 

Amount of cells used 

4-bit KSPPA 8-bit KSPPA 

PP4 26 0 4 

GPP4 16 1 1 

GPP3 12 1 1 

GPP2 8 1 5 

buffer 4 4 5 

Total number of transistor used 52 192 

 

 Number of transistors 

4-bit 8-bit 

Radix-2 68 224 

Radix-3 64 184 

Radix-4 52 192 

 



7 

 

Figure 17. Radix-4 tree of 8-bit KSPPA 

 

Table V shows the computation of logical depth. Based on 

Table V, it clearly shows that for both 4-bit and 8-bit KSPPA, 

the logical depth of radix-4 reduced by 50% compared to 

radix-2. 

TABLE V.  LOGICAL DEPTH 

Logical depth, 

        

Kogge Stone parallel prefix adder 

4-bit 8-bit 

Radix- 2 2.0 3.0 

Radix-3 1.3 1.9 

Radix-4 1.0 1.5 

 

B. Simulation Result 

In this part, the result of simulation waveform, propagation 

delay, and average power consumption of each radix design of 

the 4-bit KSPPA and 8-bit KSPPA is presented. These results 

presented in three main divisions. The first division is the 

result of simulation waveform, second division is the 

propagation delay and third division is the average power 

consumption.  

1) Simulation waveform: In this division, the Fig. 18 

shows the simulation waveform for radix-2 of 4-bit KSPPA. 

Based on Fig. 18, it showed that for the given input A and B 

of 1111 and 1010 respectively, the output produced is 1001 

with Cout of 1. Same goes with radix-3 and radix-4, as the 

input A and B given is 1111 and 1010 respectively, the output 

produced is 1001 with Cout of 1. Hence it is proven that all 

the radix design of 4-bit KSPPA is correct. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

          Figure 18. The simulation result of radix-2 of 4-bit KSPPA 

 

Fig. 19 shows the simulation waveform for radix-2 of 8-bit 

KSPPA. Based on Fig. 19, shows that for the given input A 

and B of 10101010 and 11111111 respectively, the output 

produced is 10101001 with Cout of 1. Similar as radix-3 and 

radix-4, for the input A and B of 10101010 and 11111111 

respectively, the output produced is 10101001 with Cout of 1. 

Therefore it is proven that the design of radix-2, radix-3 and 

radix-4 of the 8-bit KSPPA is truthful. 
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Figure 19. The simulation result of radix-2 of 8-bit KSPPA 

2) Propagation delay: this division shows the tabulated 

result of propagation delay. Table VI list the propagation 

delay of radix-2, radix-3 and radix-4 of the 4-bit KSPPA. By 

referring toTable VI, it shows that the radix-4 is the fastest and 

radix-2 is the slowest. When computed, radix-4 is faster than 

radix-2 by 3%. 

TABLE VI.  PROPAGATION DELAY OF 4-BIT KSPPA 

 

Output 

Time (s) 

Radix- 2 Radix- 3 Radix- 4 

COUT 849.53 p 850.37 p 786.12 p 

S0 1.2945 n 1.2943 n 1.3018 n 

S1 1.5036 n 1.5191 n 1.5312 n 

S2 1.5676 n 1.5691 n 1.5684 n 

S3 1.6179 n 1.5509 n 1.5511 n 

 

Table VII list the propagation delay of radix -2, radix-3 and 

radix-4 of the 8-bit KSPPA. Based on Table VII, it shows that 

radix-3 is the fastest yet remained radix-2 as the slowest. 

When computed, radix-3 is faster than radix-2 by 9%.  

TABLE VII.  PROPAGATION DELAY OF 8-BIT KSPPA 

Output Time (s) 

Radix- 2 Radix- 3 Radix- 4 

COUT 1.5104 n 1.4483 n 1.4483 n 

S0 1.2051 n 1.2047 n 1.2051 n 

S1 1.8854 n 1.7093 n 1.7197 n 

S2 1.7646 n 1.6042 n 1.6180 n 

S3 1.6315 n 1.5899 n 1.6042 n 

S4 1.6500 n 1.4833 n 1.5903 n 

S5 1.5278 n 1.4835 n 1.4807 n 

S6 1.5280 n 1.4683 n 1.4664 n 

S7 1.5133 n 1.4506 n 1.4502 n 

 
 

3) Average Power Consumption: Table VIII in this 

division shows the tabulated result of average power 

consumption for each radix design of 4-bit and 8-bit KSPPA. 

Based on this table, indicates that radix-4 consumed lowest 

power compared to radix-2 by 1.2% for 4-bit KSSPA. Then, 

for 8-bit KSPPA it shows that radix-3 consumed lowest power 

compared to radix-2 by 6.6%.  
 

TABLE VIII.  AVERAGE POWER CONSUMPTION 

 Power (µW) 

Radix-2 Radix-3 Radix-4 

4-bit 223.58 222.19 220.97 

8-bit 257.68 240.56 247.67 

 

By referring to all the tabulated result above, this study 

resulting to two important findings. The first thing is, it proved 
that both characteristics of 4-bit KSPPA and 8-bit KSPPA is 

favorable when is implemented in radix-3 and radix-4 design 

compared to that radix-2 design to perform the same 

operation. This is due to radix-2 design used highest number 

of transistors, gone through highest logical depth, slowest 

propagation delay and consumed highest power for both 4-bit 

KSPPA and 8-bit KSPPA characteristics. Thus, as practical 

implementations has generally been limited to radix-2 design 
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[2][4], the feasible of implementation of the radix-3 and radix-

4 implementation of the KSPPA can be said in this paper. 

 

The other important result is, determining the best radix 

design for 4-bit KSPPA and 8-bit KSPPA. For 4-bit KSPPA, 

radix-4 is the best design while radix-2 is the worst, as radix-4 
design reduced logical depth by 50%, reduced transistors used 

as much as 23%, 3% faster, and lower average power 

consumption by 1.2% compared to radix-2. Nevertheless, for 

8-bit KSPPA radix-3 design came out as the best design 

instead of radix-4 design. This is because of radix-3 giving 

optimum value for most of the 8-bit KSPPA characteristics in 

terms of the number of transistors used, propagation delay and 

average power consumption. The radix-3 design reduced 

transistors used as much as 18%, 9% faster, and lower average 

power consumption by 6.6% compared to radix-2.  

 

Therefore, even though radix-4 design is considered as the 
best design as described in [8], based on this study, it can be 

says that the optimum value for characteristics of KSPPA is 

not depends only on the radix design however is also 

influenced by other factors. One of the factors is the number 

of transistor used. As obtained in this study, when the number 

of transistors used in any design is least, the propagation delay 

will be fastest and average power consumption would be 

lowest. Only the value for logical depth is remained least for 

highest radix, as it already has unaltered formula        
 

VI. CONCLUSION AND RECOMMENDATION 

As the conclusion, it can be conclude that the radix-3 and 

radix-4 would be better design compared to radix-2 for both 4-

bit KSPPA and 8-bit KSPPA implementation. Then, it is 

important to noted that the optimum value for characteristics 

of KSPPA is not only depends on the radix design however 

also depends by other factor where to be exact, in this study, 

the factor is the number of transistors used.  

 

As the recommendation, the further study could be done in 

future by increasing the input bit width, which it was hope to 

study the factors that influenced the characteristics of KSPPA 
as the bit width is higher.  
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