
1

Simulation Study of 4-bit and 8-bit Kogge Stone

Parallel Prefix Adder Circuit Characteristics Using

SILVACO

Siti Rohaya binti Ya’acob @ Selamat

Faculty of Electrical Engineering (Electronic)

Universiti Teknologi MARA

Shah Alam, Malaysia
rohayaacob@gmail.com

Abstract— This paper describes the design of Radix-2, Radix-3

and Radix-4 of 4-bit and 8-bit Kogge Stone Parallel Prefix Adder

(KSPPA) architecture. The objective is to study and investigate

the effects of these different radix to the various characteristics of

KSPPA in terms of logical depth, number of transistors used,

propagation delay, and average power consumption. The

simulation study is carried out by Gateway SILVACO EDA

Tools software and the design is mapped for a 0.18µm CMOS

technology with 1.8V of supply voltage. The result shows that for

4-bit KSPPA, the Radix-4 is the best design while Radix-2 is the

worst design, as Radix-4 reduced logical depth by 50%, reduced

transistors used as much as 23%, 3% faster, and lower average

power consumption by 1.2%. Then for 8-bit KSPPA, Radix-3 is

the best design while Radix-2 still the worst design, as Radix-3

reduced logical depth by 50%, reduced transistor used as much

as 18%, 9% faster, and lower average power consumption by
6.6%.

Keywords-component; KSPPA; Radix; characteristics

I. INTRODUCTION

In VLSI implementation, adders are critically an important

element in processor chips because they are used in floating-

point arithmetic units, arithmetic logic units (ALU), and

address generation units [1]. Adders delay can significantly

affect the maximum operating speed of these processors.
Therefore, even a small improvement in the design of an adder

can result in significant improvements in the performance of

the entire processor. This has result a large number of adder

architectures, which include parallel prefix adder architecture.

The literature describes the parallel prefix adder are the most

suitable for VLSI implementation due to their regular structure

and efficient design [2, 3, 4]. In parallel prefix adder structure,

the logical depth, k is determine by logr n, where n is the bit

width of the input signals and r is radix. Radix represents the

total fan in into gray cell and black cell in parallel prefix adder

architecture.

There are several types of parallel prefix adders; they are

Ladner-Fischer, Kogge-Stone, Brent-Kung, Han-Carlson,

Knowles and Sklansky [5, 6]. A recent comparison among

these architectures has been done using logical effort

calculation. As the result, the Kogge-Stone is considered as

the fastest design possible however requires larger area and

consumed more power [5]. As the requirement of the adder

design are; primarily fast and secondarily efficient in terms of

power consumption and chip area [7], Kogge-Stone
architectures is focused in this paper. This paper describes the

simulation study of 4-bit KSPPA and 8-bit KSPPA by using

radix-2, radix-3 and radix-4 design. The number of 2, 3 and 4

in the radix design representing the maximum fan-in that are

allowed into the gray cell and black cell in each radix design

respectively [7, 8]. The objective is to study and investigate

the effects of different radix to the logical depth, number of

transistors used, propagation delay, and average power

consumption of Kogge-Stone architecture. The simulation

study is carried out by Gateway SILVACO EDA Tools

software and the design is mapped for a 0.18µm CMOS

technology with 1.8V of supply voltage. All design
constraints, such as output load (C=1pF, R=500kΩ) and

transistor ratio, were held constant for each architecture. It was

expected that radix-4 design would come out as the best

design as revealed in [8].

II. THEORY AND DEFINITION

The complete functioning of Kogge-Stone parallel prefix

adder can be easily comprehended by analyzing it in terms of

three distinct part: Pre-processing, prefix carry tree, and post-

processing [1, 9, 10].

A. Pre-processing

This step involves computation of carry generate bits

 and carry propagate bits corresponding to each pair

of bits in A and B. These signals are given by the logic

equations below:

 (1)

mailto:rohayaacob@gmail.com

2

 (2)

where;

 which .

 . and denote the logical AND and exclusive-
OR operations respectively.

The combination of equation (1) and (2) represents as the

half adder.

B. Prefix Carry Tree

This part differentiates Kogge-Stone parallel prefix

adder from other adders. This step involves computation

of group propagate bit and group generate bit to

compute carry signals corresponding to each bit, which

is given by the logic equation below:

 (3)

 (4)

 (5)

where:

Or else, can be computes by:

 (6)

C. Post-Processing

This is the final step which involves computation of sum

bits . Sum bits are computed by the logic given below:

 (7)

The input carry, Cin of the adder is assumed to be 0.

These three parts is illustrated in the block diagram in Fig.

1 [5]. and represent the bit operands. and represent

the carry propagate bits and carry generate bits. These signals

are utilized to compute the carry through the recurrence

equation given in (6).

Figure 1. Block Diagram of Parallel Prefix Adder.

The prefix carry tree is an interconnection of a number of

 and cells. cells compute and

 as defined in (3) and (4) respectively. cells

computes only [5]. cells is optional either to put

in or can contain no cells. The radix-2, radix-3 and radix-4

 cell and cell that represent fan-in of two, three

and four respectively, and cell are illustrated in Fig. 2.

Figure 2. (a)radix-2 (b)radix-3 (c)radix-4 of black cell, (d)radix-2 (e)radix-3

(f) radix-4 of cell, and (g) cell.

III. 4-BIT KOGGE STONE PARALLEL PREFIX ADDER

This study focus on the effect of different radix to the

characteristics of 4-bit KSPPA and 8-bit KSPPA in terms of

logical depth, number of transistors used, propagation delay and

average power consumption. So upon the completion of this

study, there are five main step are involved. This section

describes the 4-bit KSPPA implementation first.

The first step is by doing theoretical analysis on each stage

of parallel prefix adder and determining the radix design
algorithm. At this stage, all the theoretical computation is done

in order to make sure theoretical equations that are used and the

comprehension of 4-bit KSPPA is right. The second step is the

development on the mathematical model of 4-bit KSPPA. At

this stage all the basic gates and cells needed is determine. The

basic gates that are required are; OR, AND, NOT, and

exclusive-OR. The cells that are required are; black, gray,

buffer, sum and half adder.

The third step is the most complex step, which is the

implementation of all the basic gates and cells required. At this

stage, the process is divided into two main parts: basic gates
implementation and cells implementation.

A. Basic Gates Implementation

The gates that are implemented are AND, OR, NOT, and

exclusive OR [6]. The symbol and circuit for these gates is
shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 respectively.

3

1) AND gate: AND is implemented by the combination

of NAND and NOT.

(a)

(b)

Figure 3. (a) symbol and (b) circuit of AND

2) OR gate: OR is implemented by the combination of

NOR and NOT.

(a)

(b)

Figure 4. (a) symbol and (b) circuit of OR

3) NOT gate

(a)

(b)

Figure 5. (a) symbol and (b) circuit of NOT

4) Exclusive-OR

(a)

(b)

Figure 6. (a) symbol and (b) circuit of exclusive-OR

B. Cells Implementation

There are five cells are implemented in this section. The

cells are black, gray, buffer, sum and half adder. As different

black cell and gray cell is used for different radix design, the

process of black cell and gray cell implementation is divided

into three parts, which is for radix-2, radix-3 and radix-4 design

respectively. However there are cells used that are same for all

the radix design. The cells are half adder, buffer and sum. Half

adder is used in pre-processing part while sum is used in post-

processing part. Buffer contained of two series NOT, half adder

contained AND, exclusive-OR and buffer, and sum contain only

exclusive-OR.

1) Radix-2 Design: black cell and gray cell for radix-2

design is named PP2 (parallel prefix-2) and GPP2 (generate

parallel prefix-2) respectively. The transistor level for

generate PP2 and GPP2 cell is shown in Fig. 7 and Fig. 8

respectively. The PP2 cell realize the following logic funtions

for the generate output.

 (8)

 (9)

a) PP2

Figure 7. Transistor level of radix-2 PP2

4

b) GPP2

Figure 8. Transistor level of radix-2 GPP2

2) Radix-3 design: In radix-3, black cell is named PP3 and

gray cell is named GPP3. For gray cell, radix-3 used both

GPP2 and GPP3. The PP3 cell realize the following logic

funtions for the generate output.

 (8)

 (9)

The transistor level for generate PP3 and GPP3 cell is shown

in Fig. 9 and Fig. 10 respectively.

a) PP3

Figure 9. Transistor level of radix-3 PP3

b) GPP3

Figure 10. Transistor level of radix-3 GPP3

3) Radix-4 design: In radix-4, gray cell is named GPP4.

No black cell is used. For gray cell, radix-4 used GPP2,

GPP3, and GPP4. The GPP4 cell realize the following logic

funtions for the generate output.

 (10)

The transistor level for generate GPP4 cell is shown in Fig. 11

below.

Figure 11. Transistor level of radix-4 GPP4

The next step taken after implementation process is the
integration process. At this stage, the implemented cells that

are required to develop the full circuit of radix-2, radix-3 and

radix-4 design of the 4-bit KSPPA is integrated

correspondingly. The result that is obtained at this stage is the

5

total number of transistors used and the logical depth for each

radix design of the 4-bit KSPPA. The result will be detailed

described in section V. Lastly, the final step in this study is the

simulation process. At this stage, each of radix design of the 4-

bit KSPPA is simulate. The simulation result that is focus on

is the propagation delay and the average power consumption
for 4-bit KSPPA for each radix design. The result also will be

detailed described in section V.

IV. 8-BIT KOGGE STONE PARALLEL PREFIX ADDER

This section described the implementation of full circuit

design of radix-2, radix-3 and radix-4 of the 8-bit KSPPA. The

objective is to predict the KSPPA characteristics in terms of

logical depth, number of transistors used, propagation delay

and average power consumption for higher bit width. The

methods taken for 8-bit KSPPA implementation is the same as

4-bit KSPPA implementation. All radix design uses the same

black and gray cell as in 4-bit KSPPA. The only different is,
black cell (PP4) is used for radix-4 8-bit KSPPA

implementation. The PP4 cell realizes the following logic

functions for the generate output: GPP4 as in equation (10),

and

 (11)

The results that obtained in both implementation process

and simulation process will be detailed described in section V.

V. RESULT AND DISCUSSION

This section is presenting all the results obtained from this

study. There are two parts in presenting the result, first part is

the result from implementation and second part is the result

from the simulation.

A. Implementation Result

The results presented in this part are; the radix tree, the
logical depth and the number of transistors used for each radix

design of the 4-bit and 8-bit KSPPA respectively.

The figures of radix-2, radix-3 and radix-4 tree of 4-bit

KSPPA are shows in Fig. 12, Fig. 13 and Fig. 14

correspondingly. Based on these figures, it shows that Radix-2

tree used two PP2 and three GPP2. Radix-3 tree used one PP3,

one GPP3, and two GPP2. Radix-4 tree used one GPP4, one

GPP3 and one GPP2. For buffer cells, the entire radix tree

used the same amount that is four.

Fig. 15, Fig. 16 and Fig. 17 shows the radix-2, radix-3 and
radix-4 tree of the 8-bit KSPPA respectively. Based on these

figures, it shows that radix-2 tree used ten PP2, seven GPP2

and seven buffer. Radix-3 used five PP3, three GPP3, four

GPP2 and four buffer. Radix-4 used four PP4, one GPP4, one

GPP3, five GPP2 and five buffer.

Figure 12. Radix-2 tree of 4-bit KSPPA

Figure 13. Radix-3 tree of 4-bit KSPPA

Figure 14. Radix-4 tree of 4-bit KSPPA

6

 Figure 15. Radix-2 tree of 8-bit KSPPA

In better understanding on the computation process of the

number of transistors used, all the cells count in each radix

tree of 4-bit and 8-bit KSPPA tabulated in Table I, II and III,

representing radix-2, radix-3 and radix-4 respectively. Table

IV is the summarization of these tables.

TABLE I. TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-2

TABLE II. TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-3

Figure 16. Radix-3 tree of 8-bit KSPPA

TABLE III. TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-4

Based on Table IV, it shows for 4-bit KSPPA, radix-4 used

least transistors while radix-2 used highest transistors. The

percentage of transistors reduced by radix-4 than radix-2 is

23%. Then for 8-bit KSPPA, it shows that radix-3 uses least

transistors and radix-2 remained uses highest transistors. By

radix-3, the percentage reduced is as much as 18%.

TABLE IV. NUMBER OF TRANSISTORS USED

Cell number of transistor

in each cell

Amount of cells used

4-bit KSPPA 8-bit KSPPA

PP2 14 2 10

GPP2 8 3 7

buffer 4 4 7

Total number of transistor used 68 224

Cell number of transistor

in each cell

Amount of cells used

4-bit KSPPA 8-bit KSPPA

PP3 20 1 5

GPP3 12 1 3

GPP2 8 2 4

buffer 4 4 4

Total number of transistor used 64 184

Cell number of transistor

in each cell

Amount of cells used

4-bit KSPPA 8-bit KSPPA

PP4 26 0 4

GPP4 16 1 1

GPP3 12 1 1

GPP2 8 1 5

buffer 4 4 5

Total number of transistor used 52 192

 Number of transistors

4-bit 8-bit

Radix-2 68 224

Radix-3 64 184

Radix-4 52 192

7

Figure 17. Radix-4 tree of 8-bit KSPPA

Table V shows the computation of logical depth. Based on

Table V, it clearly shows that for both 4-bit and 8-bit KSPPA,

the logical depth of radix-4 reduced by 50% compared to

radix-2.

TABLE V. LOGICAL DEPTH

Logical depth,

Kogge Stone parallel prefix adder

4-bit 8-bit

Radix- 2 2.0 3.0

Radix-3 1.3 1.9

Radix-4 1.0 1.5

B. Simulation Result

In this part, the result of simulation waveform, propagation

delay, and average power consumption of each radix design of

the 4-bit KSPPA and 8-bit KSPPA is presented. These results

presented in three main divisions. The first division is the

result of simulation waveform, second division is the

propagation delay and third division is the average power

consumption.

1) Simulation waveform: In this division, the Fig. 18

shows the simulation waveform for radix-2 of 4-bit KSPPA.

Based on Fig. 18, it showed that for the given input A and B

of 1111 and 1010 respectively, the output produced is 1001

with Cout of 1. Same goes with radix-3 and radix-4, as the

input A and B given is 1111 and 1010 respectively, the output

produced is 1001 with Cout of 1. Hence it is proven that all

the radix design of 4-bit KSPPA is correct.

 Figure 18. The simulation result of radix-2 of 4-bit KSPPA

Fig. 19 shows the simulation waveform for radix-2 of 8-bit

KSPPA. Based on Fig. 19, shows that for the given input A

and B of 10101010 and 11111111 respectively, the output

produced is 10101001 with Cout of 1. Similar as radix-3 and

radix-4, for the input A and B of 10101010 and 11111111

respectively, the output produced is 10101001 with Cout of 1.

Therefore it is proven that the design of radix-2, radix-3 and

radix-4 of the 8-bit KSPPA is truthful.

A0

A1

A2

A3

B0

B1

B2

B3

COUT

S0

S1

S2

S3

8

Figure 19. The simulation result of radix-2 of 8-bit KSPPA

2) Propagation delay: this division shows the tabulated

result of propagation delay. Table VI list the propagation

delay of radix-2, radix-3 and radix-4 of the 4-bit KSPPA. By

referring toTable VI, it shows that the radix-4 is the fastest and

radix-2 is the slowest. When computed, radix-4 is faster than

radix-2 by 3%.

TABLE VI. PROPAGATION DELAY OF 4-BIT KSPPA

Output

Time (s)

Radix- 2 Radix- 3 Radix- 4

COUT 849.53 p 850.37 p 786.12 p

S0 1.2945 n 1.2943 n 1.3018 n

S1 1.5036 n 1.5191 n 1.5312 n

S2 1.5676 n 1.5691 n 1.5684 n

S3 1.6179 n 1.5509 n 1.5511 n

Table VII list the propagation delay of radix -2, radix-3 and

radix-4 of the 8-bit KSPPA. Based on Table VII, it shows that

radix-3 is the fastest yet remained radix-2 as the slowest.

When computed, radix-3 is faster than radix-2 by 9%.

TABLE VII. PROPAGATION DELAY OF 8-BIT KSPPA

Output Time (s)

Radix- 2 Radix- 3 Radix- 4

COUT 1.5104 n 1.4483 n 1.4483 n

S0 1.2051 n 1.2047 n 1.2051 n

S1 1.8854 n 1.7093 n 1.7197 n

S2 1.7646 n 1.6042 n 1.6180 n

S3 1.6315 n 1.5899 n 1.6042 n

S4 1.6500 n 1.4833 n 1.5903 n

S5 1.5278 n 1.4835 n 1.4807 n

S6 1.5280 n 1.4683 n 1.4664 n

S7 1.5133 n 1.4506 n 1.4502 n

3) Average Power Consumption: Table VIII in this

division shows the tabulated result of average power

consumption for each radix design of 4-bit and 8-bit KSPPA.

Based on this table, indicates that radix-4 consumed lowest

power compared to radix-2 by 1.2% for 4-bit KSSPA. Then,

for 8-bit KSPPA it shows that radix-3 consumed lowest power

compared to radix-2 by 6.6%.

TABLE VIII. AVERAGE POWER CONSUMPTION

 Power (µW)

Radix-2 Radix-3 Radix-4

4-bit 223.58 222.19 220.97

8-bit 257.68 240.56 247.67

By referring to all the tabulated result above, this study

resulting to two important findings. The first thing is, it proved
that both characteristics of 4-bit KSPPA and 8-bit KSPPA is

favorable when is implemented in radix-3 and radix-4 design

compared to that radix-2 design to perform the same

operation. This is due to radix-2 design used highest number

of transistors, gone through highest logical depth, slowest

propagation delay and consumed highest power for both 4-bit

KSPPA and 8-bit KSPPA characteristics. Thus, as practical

implementations has generally been limited to radix-2 design

A0

A1

A2

A3

B0

B1

B2

B3

A4

A5

A6

A7

B4

B5

B6

B7

COUT

S0

S1

S2

S3

S4

S5

S6

S7

9

[2][4], the feasible of implementation of the radix-3 and radix-

4 implementation of the KSPPA can be said in this paper.

The other important result is, determining the best radix

design for 4-bit KSPPA and 8-bit KSPPA. For 4-bit KSPPA,

radix-4 is the best design while radix-2 is the worst, as radix-4
design reduced logical depth by 50%, reduced transistors used

as much as 23%, 3% faster, and lower average power

consumption by 1.2% compared to radix-2. Nevertheless, for

8-bit KSPPA radix-3 design came out as the best design

instead of radix-4 design. This is because of radix-3 giving

optimum value for most of the 8-bit KSPPA characteristics in

terms of the number of transistors used, propagation delay and

average power consumption. The radix-3 design reduced

transistors used as much as 18%, 9% faster, and lower average

power consumption by 6.6% compared to radix-2.

Therefore, even though radix-4 design is considered as the
best design as described in [8], based on this study, it can be

says that the optimum value for characteristics of KSPPA is

not depends only on the radix design however is also

influenced by other factors. One of the factors is the number

of transistor used. As obtained in this study, when the number

of transistors used in any design is least, the propagation delay

will be fastest and average power consumption would be

lowest. Only the value for logical depth is remained least for

highest radix, as it already has unaltered formula

VI. CONCLUSION AND RECOMMENDATION

As the conclusion, it can be conclude that the radix-3 and

radix-4 would be better design compared to radix-2 for both 4-

bit KSPPA and 8-bit KSPPA implementation. Then, it is

important to noted that the optimum value for characteristics

of KSPPA is not only depends on the radix design however

also depends by other factor where to be exact, in this study,

the factor is the number of transistors used.

As the recommendation, the further study could be done in

future by increasing the input bit width, which it was hope to

study the factors that influenced the characteristics of KSPPA
as the bit width is higher.

VII. ACKNOWLEDGMENT

The special thank goes to my helpful supervisor, Encik Syed

Abdul Mutalib Al-Junid. The supervision and support that he

gave truly help the progression and smoothness of this study.

REFERENCES

[1] Giorgos Dimitrakopoulos and Dimitris Nikolos, “High-Speed Parallel
Prefix VLSI Ling Adders,” Science, vol. 54, Feb. 2005, pp. 225-231.

[2] Vibhuti Dave, Erdal Oruklu, and Jafar Saniie, “Performance Evaluation

of Flagged Prefix Adders for constant Addition,” Science, April 2006.

[3] Youngmoon Choi, B.S., M.S., “Parallel Prefix Adder Design”, Science,
December 2004.

[4] Matthew M. Ziegler and Mircea R.Stan, “A Unified Design Space for

Regular Parallel Prefix Adders,” Science, 2004.

[5] David Harris and Ivan Sutherland, “Logical Effort of Carry Propagation

Adders,”Science, 2003, pp. 873-878.

[6] Neil H.E. Weste and David Harris, CMOS VLSI Design: a circuits and
systems perspective. Pearson Education, 2005, pp. 15-17, pp. 689.

[7] Andrew Beaumont-Smith and Cheng-Chew Lim, “Parallel Prefix Adder

Design,” Science,. 2001, pp. 218-225.

[8] FrankK Gurkaynak, Yusuf Leblebici, Laurent Chaoqat and Patrick J.
McGuinness “Higher Radix Kogge-Stone Parallel Prefix Adder

Architectures,” Science, May. 2000, pp. 609-612.

[9] Anurag Sindhu and Ashish Bhatia, “8-bit Kogge Stone Adder,” Science,
April 2009.

[10] Swaroop Ghosh, Patrick Ndai, Kaushik Roy, “A Novel Low Overhead

Fault Tolerant Kogge-Stone Adder Using Adaptive Clocking,” Science,
2008.

