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Abstract— This paper describes the design of Radix-2, Radix-3
and Radix-4 of 4-bit and 8-bit Kogge Stone Parallel Prefix Adder
(KSPPA) architecture. The objective is to study and investigate
the effects of these different radix to the various characteristics of
KSPPA in terms of logical depth, number of transistors used,
propagation delay, and average power consumption. The
simulation study is carried out by Gateway SILVACO EDA
Tools software and the design is mapped for a 0.18um CMOS
technology with 1.8V of supply voltage. The result shows that for
4-bit KSPPA, the Radix-4 is the best design while Radix-2 is the
worst design, as Radix-4 reduced logical depth by 50%, reduced
transistors used as much as 23%, 3% faster, and lower average
power consumption by 1.2%. Then for 8-bit KSPPA, Radix-3 is
the best design while Radix-2 still the worst design, as Radix-3
reduced logical depth by 50%, reduced transistor used as much
as 18%, 9% faster, and lower average power consumption by
6.6%.
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l. INTRODUCTION

In VLSI implementation, adders are critically an important
element in processor chips because they are used in floating-
point arithmetic units, arithmetic logic units (ALU), and
address generation units [1]. Adders delay can significantly
affect the maximum operating speed of these processors.
Therefore, even a small improvement in the design of an adder
can result in significant improvements in the performance of
the entire processor. This has result a large number of adder
architectures, which include parallel prefix adder architecture.
The literature describes the parallel prefix adder are the most
suitable for VLSI implementation due to their regular structure
and efficient design [2, 3, 4]. In parallel prefix adder structure,
the logical depth, k is determine by log, n, where n is the bit
width of the input signals and r is radix. Radix represents the
total fan in into gray cell and black cell in parallel prefix adder
architecture.

There are several types of parallel prefix adders; they are
Ladner-Fischer, Kogge-Stone, Brent-Kung, Han-Carlson,

Knowles and Sklansky [5, 6]. A recent comparison among
these architectures has been done using logical effort
calculation. As the result, the Kogge-Stone is considered as
the fastest design possible however requires larger area and
consumed more power [5]. As the requirement of the adder
design are; primarily fast and secondarily efficient in terms of
power consumption and chip area [7], Kogge-Stone
architectures is focused in this paper. This paper describes the
simulation study of 4-bit KSPPA and 8-bit KSPPA by using
radix-2, radix-3 and radix-4 design. The number of 2, 3 and 4
in the radix design representing the maximum fan-in that are
allowed into the gray cell and black cell in each radix design
respectively [7, 8]. The objective is to study and investigate
the effects of different radix to the logical depth, number of
transistors used, propagation delay, and average power
consumption of Kogge-Stone architecture. The simulation
study is carried out by Gateway SILVACO EDA Tools
software and the design is mapped for a 0.18um CMOS
technology with 1.8V of supply voltage. All design
constraints, such as output load (C=1pF, R=500kQ) and
transistor ratio, were held constant for each architecture. It was
expected that radix-4 design would come out as the best
design as revealed in [8].

Il.  THEORY AND DEFINITION

The complete functioning of Kogge-Stone parallel prefix
adder can be easily comprehended by analyzing it in terms of
three distinct part; Pre-processing, prefix carry tree, and post-
processing [1, 9, 10].

A. Pre-processing

This step involves computation of carry generate bits
g; and carry propagate bits p; corresponding to each pair
of bits in A and B. These signals are given by the logic
equations below:

pi = a; D b; (1)
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gi =a;.b; (2)
where;
e 0<i<n-—1whichi=0,12,..,n—-1.
e . and @ denote the logical AND and exclusive-
OR operations respectively.

The combination of equation (1) and (2) represents as the
half adder.

B. Prefix Carry Tree

This part differentiates Kogge-Stone parallel prefix
adder from other adders. This step involves computation
of group propagate bit P;.; and group generate bit G;.; to
compute carry signals c; corresponding to each bit, which
is given by the logic equation below:

Gij = Gix+ (Puk-Gi-1.j) 3)
Pi.j = Ppg. Pr_1;j 4)
¢i = Gip (®)

where:

MSB LSB

Or else, ¢; can be computes by:
¢ =g+ (Pi-ci-1) (6)

C. Post-Processing

This is the final step which involves computation of sum
bits s;. Sum bits are computed by the logic given below:
Si=pi D i (7

The input carry, C;, of the adder is assumed to be 0.

These three parts is illustrated in the block diagram in Fig.
1 [5]. a and b represent the n bit operands. p and g represent
the carry propagate bits and carry generate bits. These signals
are utilized to compute the carry c; through the recurrence
equation given in (6).
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Figure 1. Block Diagram of Parallel Prefix Adder.

The prefix carry tree is an interconnection of a number of
black, gray and buffer cells. black cells compute G;.; and
P;; as defined in (3) and (4) respectively. gray cells
computes only G;.; [5]. buffer cells is optional either to put
in or can contain no cells. The radix-2, radix-3 and radix-4
black cell and gray cell that represent fan-in of two, three
and four respectively, and buf fer cell are illustrated in Fig. 2.
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Figure 2. (a)radix-2 (b)radix-3 (c)radix-4 of black cell, (d)radix-2 (e)radix-3
(f) radix-4 of gray cell, and (g) buf fer cell.

Il.  4-BIT KOGGE STONE PARALLEL PREFIX ADDER

This study focus on the effect of different radix to the
characteristics of 4-bit KSPPA and 8-bit KSPPA in terms of
logical depth, number of transistors used, propagation delay and
average power consumption. So upon the completion of this
study, there are five main step are involved. This section
describes the 4-bit KSPPA implementation first.

The first step is by doing theoretical analysis on each stage
of parallel prefix adder and determining the radix design
algorithm. At this stage, all the theoretical computation is done
in order to make sure theoretical equations that are used and the
comprehension of 4-bit KSPPA is right. The second step is the
development on the mathematical model of 4-bit KSPPA. At
this stage all the basic gates and cells needed is determine. The
basic gates that are required are; OR, AND, NOT, and
exclusive-OR. The cells that are required are; black, gray,
buffer, sum and half adder.

The third step is the most complex step, which is the
implementation of all the basic gates and cells required. At this
stage, the process is divided into two main parts: basic gates
implementation and cells implementation.

A. Basic Gates Implementation

The gates that are implemented are AND, OR, NOT, and
exclusive OR [6]. The symbol and circuit for these gates is
shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 respectively.



1) AND gate: AND is implemented by the combination
of NAND and NOT.
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Figure 3. (a) symbol and (b) circuit of AND

2) OR gate: OR is implemented by the combination of
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Figure 4. (a) symbol and (b) circuit of OR

3) NOT gate

Figure 5. (a) symbol and (b) circuit of NOT
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Figure 6. (a) symbol and (b) circuit of exclusive-OR

B. Cells Implementation

There are five cells are implemented in this section. The
cells are black, gray, buffer, sum and half adder. As different
black cell and gray cell is used for different radix design, the
process of black cell and gray cell implementation is divided
into three parts, which is for radix-2, radix-3 and radix-4 design
respectively. However there are cells used that are same for all
the radix design. The cells are half adder, buffer and sum. Half
adder is used in pre-processing part while sum is used in post-
processing part. Buffer contained of two series NOT, half adder
contained AND, exclusive-OR and buffer, and sum contain only
exclusive-OR.

1) Radix-2 Design: black cell and gray cell for radix-2
design is named PP2 (parallel prefix-2) and GPP2 (generate
parallel prefix-2) respectively.  The transistor level for
generate PP2 and GPP2 cell is shown in Fig. 7 and Fig. 8
respectively. The PP2 cell realize the following logic funtions
for the generate output.

PPP2 = P,.P, (8)
GPP2 = G, + P,.G, 9)
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Figure 7. Transistor level of radix-2 PP2



b) GPP2
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Figure 8. Transistor level of radix-2 GPP2

2) Radix-3 design: In radix-3, black cell is named PP3 and
gray cell is named GPP3. For gray cell, radix-3 used both
GPP2 and GPP3. The PP3 cell realize the following logic
funtions for the generate output.

PPP3 = P,.P,.P, @)
GPP3 = G, + (P,. (G, + P..Gy)) ©)

The transistor level for generate PP3 and GPP3 cell is shown
in Fig. 9 and Fig. 10 respectively.
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Figure 9. Transistor level of radix-3 PP3
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Figure 10. Transistor level of radix-3 GPP3

3) Radix-4 design: In radix-4, gray cell is named GPP4.
No black cell is wused. For gray cell, radix-4 used GPP2,
GPP3, and GPP4. The GPP4 cell realize the following logic
funtions for the generate output.

GPP4 = G; + (P; (G, + (P, (G, + P.Gy)))  (10)

The transistor level for generate GPP4 cell is shown in Fig. 11
below.
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Figure 11. Transistor level of radix-4 GPP4

The next step taken after implementation process is the
integration process. At this stage, the implemented cells that
are required to develop the full circuit of radix-2, radix-3 and
radix-4 design of the 4-bit KSPPA is integrated
correspondingly. The result that is obtained at this stage is the



total number of transistors used and the logical depth for each
radix design of the 4-bit KSPPA. The result will be detailed
described in section V. Lastly, the final step in this study is the
simulation process. At this stage, each of radix design of the 4-
bit KSPPA is simulate. The simulation result that is focus on
is the propagation delay and the average power consumption
for 4-bit KSPPA for each radix design. The result also will be
detailed described in section V.

IV. 8-BIT KOGGE STONE PARALLEL PREFIX ADDER

This section described the implementation of full circuit
design of radix-2, radix-3 and radix-4 of the 8-bit KSPPA. The
objective is to predict the KSPPA characteristics in terms of
logical depth, number of transistors used, propagation delay
and average power consumption for higher bit width. The
methods taken for 8-bit KSPPA implementation is the same as
4-bit KSPPA implementation. All radix design uses the same
black and gray cell as in 4-bit KSPPA. The only different is,
black cell (PP4) is wused for radix-4 8-bit KSPPA
implementation. The PP4 cell realizes the following logic
functions for the generate output: GPP4 as in equation (10),
and

PPP4 = P,.P,.P,.P, (11)

The results that obtained in both implementation process
and simulation process will be detailed described in section V.

V. RESULT AND DISCUSSION

This section is presenting all the results obtained from this
study. There are two parts in presenting the result, first part is
the result from implementation and second part is the result
from the simulation.

A. Implementation Result

The results presented in this part are; the radix tree, the
logical depth and the number of transistors used for each radix
design of the 4-bit and 8-bit KSPPA respectively.

The figures of radix-2, radix-3 and radix-4 tree of 4-bit
KSPPA are shows in Fig. 12, Fig. 13 and Fig. 14
correspondingly. Based on these figures, it shows that Radix-2
tree used two PP2 and three GPP2. Radix-3 tree used one PP3,
one GPP3, and two GPP2. Radix-4 tree used one GPP4, one
GPP3 and one GPP2. For buffer cells, the entire radix tree
used the same amount that is four.

Fig. 15, Fig. 16 and Fig. 17 shows the radix-2, radix-3 and
radix-4 tree of the 8-bit KSPPA respectively. Based on these
figures, it shows that radix-2 tree used ten PP2, seven GPP2
and seven buffer. Radix-3 used five PP3, three GPP3, four
GPP2 and four buffer. Radix-4 used four PP4, one GPP4, one
GPP3, five GPP2 and five buffer.
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Figure 15. Radix-2 tree of 8-bit

In better understanding on the computation process of the
number of transistors used, all the cells count in each radix
tree of 4-bit and 8-bit KSPPA tabulated in Table I, 1l and III,
representing radix-2, radix-3 and radix-4 respectively. Table
IV is the summarization of these tables.

TABLE I. TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-2
Cell number of transistor Amount of cells used
in each cell 4-bit KSPPA 8-bit KSPPA
PP2 14 2 10
GPP2 8 3 7
buffer 4 4 7
Total number of transistor used 68 224

TABLE II. TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-3
Cell number of transistor Amount of cells used
in each cell 4-bit KSPPA 8-bit KSPPA
PP3 20 1 5
GPP3 12 1 3
GPP2 8 2 4
buffer 4 4 4
Total number of transistor used 64 184
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TABLE III. TOTAL NUMBER OF TRANSISTOR USED FOR RADIX-4
Cell number of transistor Amount of cells used
in each cell 4-bit KSPPA 8-bit KSPPA

PP4 26 0 4
GPP4 16 1 1
GPP3 12 1 1
GPP2 8 1 5
buffer 4 4 5

Total number of transistor used 52 192

Based on Table IV, it shows for 4-bit KSPPA, radix-4 used
least transistors while radix-2 used highest transistors. The
percentage of transistors reduced by radix-4 than radix-2 is
23%. Then for 8-bit KSPPA, it shows that radix-3 uses least
transistors and radix-2 remained uses highest transistors. By
radix-3, the percentage reduced is as much as 18%.

TABLE IV. NUMBER OF TRANSISTORS USED
Number of transistors
4-bit 8-bit
Radix-2 68 224
Radix-3 64 184
Radix-4 52 192
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Table V shows the computation of logical depth. Based on
Table V, it clearly shows that for both 4-bit and 8-bit KSPPA,
the logical depth of radix-4 reduced by 50% compared to
radix-2.

TABLE V. LoGICAL DEPTH
Logical depth, Kogge Stone parallel prefix adder
k =log,n 4-bit 8-bit
Radix- 2 2.0 3.0
Radix-3 1.3 1.9
Radix-4 1.0 1.5

B. Simulation Result

In this part, the result of simulation waveform, propagation
delay, and average power consumption of each radix design of
the 4-bit KSPPA and 8-bit KSPPA is presented. These results
presented in three main divisions. The first division is the
result of simulation waveform, second division is the
propagation delay and third division is the average power
consumption.

1)  Simulation waveform: In this division, the Fig. 18
shows the simulation waveform for radix-2 of 4-bit KSPPA.
Based on Fig. 18, it showed that for the given input A and B
of 1111 and 1010 respectively, the output produced is 1001
with Cout of 1. Same goes with radix-3 and radix-4, as the
input A and B given is 1111 and 1010 respectively, the output
produced is 1001 with Cout of 1. Hence it is proven that all
the radix design of 4-bit KSPPA is correct.

,,,,,,,,,,,

L [ e B

I
S0

l 1

S1

'
0
H 3

=R

T T

Figure 18. The simulation result of radix-2 of 4-bit KSPPA

Fig. 19 shows the simulation waveform for radix-2 of 8-bit
KSPPA. Based on Fig. 19, shows that for the given input A
and B of 10101010 and 11111111 respectively, the output
produced is 10101001 with Cout of 1. Similar as radix-3 and
radix-4, for the input A and B of 10101010 and 11111111
respectively, the output produced is 10101001 with Cout of 1.
Therefore it is proven that the design of radix-2, radix-3 and
radix-4 of the 8-bit KSPPA is truthful.



2) Propagation delay: this division shows the tabulated
result of propagation delay. Table VI list the propagation
delay of radix-2, radix-3 and radix-4 of the 4-bit KSPPA. By
referring toTable VI, it shows that the radix-4 is the fastest and
radix-2 is the slowest. When computed, radix-4 is faster than
radix-2 by 3%.

TABLE VI. PROPAGATION DELAY OF 4-BIT KSPPA
Time (s)
Output Radix- 2 Radix- 3 Radix- 4
COouT 849.53 p 850.37 p 786.12 p
SO 1.2945n 1.2943n 1.3018 n
Sl 1.5036 n 15191 n 1.5312n
S2 15676 n 1.5691 n 1.5684 n
S3 1.6179n 1.5509 n 1.5511n

Table VII list the propagation delay of radix -2, radix-3 and
radix-4 of the 8-bit KSPPA. Based on Table VII, it shows that
radix-3 is the fastest yet remained radix-2 as the slowest.

When computed, radix-3 is faster than radix-2 by 9%.

TABLE VII. PROPAGATION DELAY OF 8-BIT KSPPA
Output Time (s)
Radix- 2 Radix- 3 Radix- 4
COuUT 1.5104 n 1.4483 n 1.4483 n
SO 1.2051n 1.2047 n 1.2051 n
S1 1.8854 n 1.7093 n 1.7197n
S2 1.7646 n 1.6042 n 1.6180 n
S3 1.6315n 1.5899 n 1.6042 n
S4 1.6500 n 1.4833n 1.5903 n
S5 1.5278 n 1.4835n 1.4807 n
S6 1.5280 n 1.4683 n 1.4664 n
S7 1.5133n 1.4506 n 1.4502 n

3) Average Power Consumption: Table VIII in this
division shows the tabulated result of average power
consumption for each radix design of 4-bit and 8-bit KSPPA.
Based on this table, indicates that radix-4 consumed lowest
power compared to radix-2 by 1.2% for 4-bit KSSPA. Then,
for 8-bit KSPPA it shows that radix-3 consumed lowest power
compared to radix-2 by 6.6%.

TABLE VIII.  AVERAGE POWER CONSUMPTION
Power (UW)
Radix-2 Radix-3 Radix-4
4-hit 223.58 222.19 220.97
8-bit 257.68 240.56 247.67

Figure 19. The simulation result of radix-2 of 8-bit KSPPA

By referring to all the tabulated result above, this study
resulting to two important findings. The first thing is, it proved
that both characteristics of 4-bit KSPPA and 8-bit KSPPA is
favorable when is implemented in radix-3 and radix-4 design
compared to that radix-2 design to perform the same
operation. This is due to radix-2 design used highest number
of transistors, gone through highest logical depth, slowest
propagation delay and consumed highest power for both 4-bit
KSPPA and 8-bit KSPPA characteristics. Thus, as practical
implementations has generally been limited to radix-2 design



[2][4], the feasible of implementation of the radix-3 and radix-
4 implementation of the KSPPA can be said in this paper.

The other important result is, determining the best radix
design for 4-bit KSPPA and 8-bit KSPPA. For 4-bit KSPPA,
radix-4 is the best design while radix-2 is the worst, as radix-4
design reduced logical depth by 50%, reduced transistors used
as much as 23%, 3% faster, and lower average power
consumption by 1.2% compared to radix-2. Nevertheless, for
8-bit KSPPA radix-3 design came out as the best design
instead of radix-4 design. This is because of radix-3 giving
optimum value for most of the 8-bit KSPPA characteristics in
terms of the number of transistors used, propagation delay and
average power consumption. The radix-3 design reduced
transistors used as much as 18%, 9% faster, and lower average
power consumption by 6.6% compared to radix-2.

Therefore, even though radix-4 design is considered as the
best design as described in [8], based on this study, it can be
says that the optimum value for characteristics of KSPPA is
not depends only on the radix design however is also
influenced by other factors. One of the factors is the number
of transistor used. As obtained in this study, when the number
of transistors used in any design is least, the propagation delay
will be fastest and average power consumption would be
lowest. Only the value for logical depth is remained least for
highest radix, as it already has unaltered formula log,n.

VI. CONCLUSION AND RECOMMENDATION

As the conclusion, it can be conclude that the radix-3 and
radix-4 would be better design compared to radix-2 for both 4-
bit KSPPA and 8-bit KSPPA implementation. Then, it is
important to noted that the optimum value for characteristics
of KSPPA is not only depends on the radix design however

also depends by other factor where to be exact, in this study,
the factor is the number of transistors used.

As the recommendation, the further study could be done in
future by increasing the input bit width, which it was hope to
study the factors that influenced the characteristics of KSPPA
as the bit width is higher.
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