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1. INTRODUCTION

Originally sequences defined using simple linear recurrence relations-such as the Fibonacci sequence
F =F +F ,,n>2,with initial terms F; =0,/ =land Lucas sequence L =L  +L ,,
n>2,L,=2,L =1 have been widely studied and are renowned for their fascinating properties in integer
mathematics. Comprehensive treatments of such sequences are available in the books by Vajda (1989)
and Koshy (2001), while generalizations of these sequences are presented in Verma (2024, 2025b).

Researchers have explored various generalizations of these sequences by either altering the initial
conditions or modifying the recurrence relation (X, =pX, +¢X,,, n>2 initial conditions
X, =a,X, =b). These modifications have further extended the study of such sequences into the complex

domain. Notably, Horadam (1961, 1963), Jordan (1965), and Harman (1981) made pioneering
contributions by investigating these sequences over the field of complex numbers.
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The development of Fibonacci sequences and their generalizations in the complex domain reveals
how seemingly simple recurrence relations can give rise to a rich tapestry of mathematical exploration.
This area of study connects numerous fields and inspires new ideas, with applications in number theory,
combinatorics, computer science, and physics. One prominent direction involves the study of complex
Fibonacci sequences, where the recurrence relations are extended to the complex plane while preserving
their core structure.

Horadam (1961) introduced generalized second-order recurrence sequences with arbitrary initial
conditions and complex coefficients, establishing a foundational framework for subsequent algebraic and
systematic investigations. Falcon and Plaza (2007) and Edson and Yayenie (2009) further examined -
Fibonacci sequences, offering new generalizations and extending Binet-type formulas to explore
underlying algebraic identities.

Asci and Leel (2017) investigated mathematical properties and identities related to generalized
Fibonacci and Lucas sequences, while Benjamin and Quinn (2003) explored these sequences through
combinatorial techniques and visual proofs. Berzsenyi (1977) analysed recurrence relations in the context
of number theory, and Bilgici (2014) studied applications of Fibonacci numbers within various algebraic
structures. Good (1993) provided probabilistic interpretations of Fibonacci numbers in mathematical
modelling.

Halici and Oz (2016) developed matrix representations and Binet formulas for k-Fibonacci
sequences. Haji-Esmaili and Ghaderi (2011) examined k-Fibonacci and k-Lucas sequences through
algebraic identities and generating functions. Harman (1981) offered historical perspectives and insights
on the educational use of Fibonacci numbers. Horadam (1963) introduced the now well-known Horadam
sequence, a broad generalization with extensive applicability.

Klein (1991) explored computational aspects of recurrence sequences, while Koshy (2001) authored
a comprehensive resource on Fibonacci and Lucas numbers. Melham and Shannon (1995) studied
properties and identities of higher-order Fibonacci-related sequences. Pethe and Horadam (1986)
advanced generalizations and analysed their mathematical behaviour. Sury (2004) examined modular
properties and divisibility within Fibonacci and Lucas sequences. Vajda (1989) laid foundational results,
offering numerous identities and relations. Verma (2025a, 2025b) contributed to the modern theory of
generalized Fibonacci sequences and their combinatorial interpretations.

Recent works have significantly contributed to this domain by introducing new formulations,
exploring cross-relations, and extending classical identities. Kaya and Ozimamoglu (2022) introduced the
generalized Gauss k-Pell numbers, along with their polynomial extensions, and derived corresponding
Binet formulas and recurrence relations. Rihane (2024) investigated the k-Fibonacci and k-Lucas
sequences, identifying conditions under which they can be expressed as a product of two Pell numbers,
enriching the interplay between different families of linear recurrence sequences. Verma (2025b)
presented a thorough treatment of generalized Fibonacci sequences, deriving closed-form Binet-type
expressions and proving novel summation identities in matrix and polynomial form. Dagdemir and Varol
(2025) investigated conditions under which Lucas numbers can be expressed as products of two Pell
numbers.

Collectively, these contributions have facilitated the derivation of closed-form expressions, complex
Binet-type formulas, generating functions, and innovative identities that extend classical results—such as
those of Cassini, Catalan, Vajda, and D’Ocagne—into the complex domain. These advancements provide
a robust theoretical and computational framework for further investigations into the rich and captivating
world of generalized complex sequences derived from second-order recurrences and their elegant
simplifications.
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2. GENERALIZED SECOND-ORDER RECURRENCE RELATIONS

Definition 1. Generalized second-order recurrence relation is given by:
C,(9.4.C,Cy) = pCyy +iqC,_, n23, i=+-1, M
bi,p;,and q; (j=12) are

where C =a, +ia,, C, =b +ib,, p=p +ip;, q=gq,+ig,(#0), a;,

arbitrary real numbers.
2.1 Generalized Complex Sequence
First few terms of the generalized complex sequence C, ( ».9.Cy, Cz) are tabulated below:
a, +ia,,b +ib,, pb —qa, -&-i(pb2 +4qa, ),
pzbl - pqa, —gb, +i(p2b2 + pqa, +qb1)5
b — p*qa, —2pgb, —q*a, +i( p’b, + p*qa +2pgb, —q’a, ),
C,,(”-P,Q,C],CZ): PO —pqa,—2pgb, —q 4 (p , TP q4, +2pqb, —q 2) . )
p'b - p’qa, =3p’qb, —2pg’a, —q’b,
+i(p'b, + p*qa, +3p’qb, - 2pq’a, —¢’b, ).

For brevity, at many places, in this article, notation C, ( 2,9,C,, Cz) will referto as C, .

2.2 Special Case
If we take, C, =1+i,C,=1-i,p=243i,q=—i then complex sequence obtained is
v (n.p’q’Vl’Vz):{l+i,—i,.—l+2i,.—2+21',—.4+i,—67i,—7—5i,}
—6-11i,-1-187,10 - 24,28 - 25i,---

+0i

If we take, C, =0+0i,C, =1+0i,p=1+0i,qg = ! then generalized complex sequence reduce to

i
C,(n.p.q.V,,V,)={0,1,1,2,3,5,8,13,21,34,55,---} which is the classical Fibonacci sequence.

+0i

If we take, C, =2+0i,C, =1+0i,p=1+0i,qg = ! then generalized complex sequence reduce to

i
C,(n.p.q.C,C,)={2,1,3,4,7,11,18,29,47,76,123,---} which is the Lucas sequence.

3. GENERATING FUNCTION

Theorem 1. For C,(p.q.C,C,)=pC,  +igC,_,,n>3,i=+-1 where C =aq,+ia,, C, =b +ib,,

p=p +ipyand g=gq,+iq,, i=~-1,a,,b,p, and q; #0 (j=1,2) are arbitrary real numbers. Then
generating function is

o( )_(al+ia2)z+(b1+ib2—pz(al+ia2))zz 3)
i [l—(pl+ip2)z—i(q1+iq2)zz] .

Proof: Forany p,q,C, and C,, let the generating function be:

C(Z)zicn(pvqﬂl/l’Vz)Z"a (4)
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C(z) = Clz-i-sz2 +iCn (p,q,Vl,Vz)z”
n=3

Now,
gc (P Vi V) 2" gpc,z_l(p,q, )z +z,qc (PaViul,)="
:pgcﬂ(p,q%lfz)zn+iq;q,2(p,qy“,/z)zn
gcn_l (V1 15) 2" :zicmzm —z(C(z)-=C)).
2C (pog Vi Vy)2" =2 ZCZ _ 52

On combining equations (5)-(8), we obtain
ZC .9,V z —pz(C(z)—zC1)+iq22C(z)
C( )=Cz+C,z* +pZ(C(z)—zC1 )+iq22C(z)
z)[l—pz—iqzz] =Cz+C,z" — pz°C,

C(z) _ Clz+(C2 - pzC, )22
|:1 - pz—iqz’ :|
On considering the p,q,C, and C, from definition (1), we have
(a] + iaz)z + [b] +ib, — pz(a] +ia, )] z*

C(z)= ; —
[l—(p1 4—1172)2—1((11 +zq2)z J
Therefore, the stated theorem is confirmed.

Theorem 2. Explicit sum formula complex generalized recurrence relation:

The n'™ term C, ( p,q,C;,C, ) of the sequence defined in expression (1) is

L H
cn(p,q,CpCz)=(Cz‘PC1)Z£ kk 2

k=0

jpnnz (iq)k i Cl

k=0

Proof: Since the generating function (9) derived in the above theorem, we have
Cz+(C,-pC)z*
Cz)= =2 (S P ;)Z
1-pz—igz

Z[Clz+(C2 —pCl)ZZ](l—pz—iqz2) ,
:[Clz+(C2 —p(,’l)zzj[l—(pz+iqzz):|

= [Clz+(C2 —pCl)zz]Z(p—i-iqz)" z
n=0

-1

-1
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=[Cz+(C, - pC,):z ]ZZ["”‘} ) 2", (n—n+k)

n=0 k=0

n=0 k=0
Equating the coefficient of z" on both sides, we obtain

C,(p.4.G.C,)=(C, pC)[Z}[n k= 2) 2 (g) +C{g["kk 1)p"-“’-l(iq)".

k=0 k=0

This substantiates the stated theorem.
4. BINET TYPE FORMULA FOR COMPLEX GENERALIZED RECURRENCE RELATION

Theorem 3. The Binet Type formula for complex generalized recurrence relation
C, (Pa%cwcz): pC,, +iqC,, is

m _m mn—Z_mn—Z
Cn(p,q,c C) [ m, _m2 ]CZ_[ 1m _mz jmlmZC]‘ (11)
2 1 2

Proof: Let C, =m", then C,(p,q.C,,C,)=pC, , +igC, , is m" = pm"™" +igm"”

Divide m"™ (m #0), we obtain characteristic equation of the generalized complex recurrence relation (1)
as:

m* — pm—iq = 0. (12)

On solving characteristic equation, we have

PP’ +4iq (13)

m,m, =

2
Let the general solution of the recurrence is
C, =Pm; +0mj, (14)
where P and Q are obtained from the initial conditions:
C, =Pm +0Om,, (15)
C, = Pm} +Qm; . (16)
On solving equations (15) and (16), we obtain
P= Cz_Clmz ,0= Clml_cz ) (17)
m, (m, —my,) my (m, —my,)

On combing equations (14) and (17), we obtain formula for the n'" term complex generalized recurrence

C,—-Cm Cm, —C
C , ,V,V — 2 17772 1774 2
n(Pq l 2) ml(ml_mQ) mz(ml—mz)

n

1

n
2

which can be written as:
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-1 n—1 n-2 n-2
m' —m m' " —m
Cn(p,q,C],Cz)z —_— G - —_— mm,C,.
m —m, m —m,

This substantiates the stated theorem.

5. SUMMATION FORMULA FOR FIRST THE » TERMS

Theorem 4. For complex generalized recurrence relation C, (p,q,C,,C,) = pC,_, +iqC,_,, the n" term is

n—1

m _mnfl mnfz _man
Cn(pﬂqﬂclacz):( ! 2 CZ_ ! 2 mlm2C'1.

my —m, m, —m,

Then, sum of first » terms:

n

S(n,p.q.C.,C,)=>.C,(p.q.C,,C,)

k=1

. 1

_ 1 _Cn+1(p:Q>C17C2)_qun (P,q,cpcz) ( 8)
1-p—ig\+C, —(p-1)C, '

Proof: Since

n n m'H —m'H mn72 _man
C,, (psqacpcz): I:[ ! 2 CZ_ ! 2 mlmZC, s (19)
k=1 k=1 m, —m, m, —m,
n n=1 _ _ n-1 _1 no___n n=1 _ _ n-l1
Z(ml - JQ - e mm, +11C, (20)
k=1 m;—m, (1 (ml +m2)+m1m2) m —m, my—m,
n n-2 n-2
Z[m] ™ Jmlm2cl
k=t\ My —m,
21)

1 mn72 _mn72 mnfl _mnfl
= ! 2 \mim; —| ———=— |mym, +(m, +m,-1) |C,
(1—(m1+m2)+m1m2) m, —m, m, —m,

On combining equations (19), (20) and (21), we obtain

Zn:Cn (p,q,Cl,Cz): Zn:li[mlnl _mgfl JCZ _(m{12 _mg’2 ]mlmzc1:| |
=1 -

k=1 m —m,

— no_oan n=1 _ _ n-1
= ! e B T O [ W mm, +1|C,
(1—(m,+m2)+mlm2) m; —m, m, —m,

1 mn—2 _mn—2 mr/—] _mn—l
- - — |\m!m} —| ———=— |mm, +(m +m, 1) |C,.
(1=(m, +m, )+ mm,) m, —m, m, —m,
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On further simplification, we obtain
i n n n-1 n-1 ]
m' —m m' —m
N N R C, - i B S m,m,C,
my, —n, my, —n,

n—1 n-1 n-2 n-2
= ! +(m1 e ]C —(—ml — JmmC
- 2 177721
(1—(m1+m2)+mlm2) m, —m, m, —m,

+C, +(m +m, —1)C,

S S N el C, +ig mom c |
(l_p_iQ) my—m, my—m,

S(n,p.q.C,,C,)=>.C,(p.q.C,,C,)

=1
_ 1 _Cn+1 (paqacl,cz)_iqcn (paq>C13C2)
1-p—ig\+C, —(p-1)C, ’

3 ptalp’ +4ig

where m,m, = 5 . This substantiates the stated sum formula.

6. GENERALIZATION OF CASSINI’S, CATALAN'S VAJDA’S AND D’OCAGNE’S
IDENTITIES FORMULA

This section extends several known identities of second-order recurrence relations into the complex
domain and establishes new identities corresponding to the general recurrence relation (1). These
identities can be derived either from the general definition (1) or from the Binet-type formula stated in
Theorem 4.1. In the results that follow, we primarily employ the general Binet-type formula given in
equation (11).

4/ p? +4i
In the following identities, m,,m, = % , and therefore m, —m, =+/p’ +4iq , m +m, = p and
mm, =—iq.
Theorem 5. Cassini's identity (sometimes called Simson's identity): For n>1,

C.C

n+1~"n-1

-C, = _(mlmZ )n-2 (C22 —(ml +m, )CICZ +mm,C} ) ) (22)

Theorem 6. Catalan's identity (Catalan’s identity is the generalization of Cassini Identity):

For n>r,

2
C..Cp =Gl = _(mlmZ )n—r—l [MJ (sz =(m, +m,)CC, +m1m2C12). (23)

n+r n—-r n
m, —m,
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Theorem 7. Vajda's identity (Vajda’s identity is the generalization of Catalan’s identity):

For integers n,k and /

k k I
aat [y —my, [ mp —m

CiiCi —CC o = (m1m2) ( m] —m2 j[ml _mz J(sz _(m1 +m2)C1C2 +mlm2C12). (24)
) | 1,

Theorem 8. D’Ocagne’s identity: For integers, n,k ,k—n>0

k—n k—n
m —m,

C,.C, ~CyiC, = (mm,)"" [ )(Cj —(m, +m,)C,C, +mm,C}). (25)

m, —m,

The above identities can also be obtained from the following identity by choosing n,r andk
appropriately.

Theorem 9. For choosing n,randk, n+r>k,

CkCn _Ckfrcrﬁrr
I mn+r—k _mn+r—k mr _mr 26
=(mmy,) '( ! ” —mz J[ml _mZJ(CZZ—(m1+m2)C1C2+mlm2C12). (26)
1 2 1 2

Theorem 10. For negative subscripts n , we obtain the identity

n+l _  n+l n+2 o n+2
C, =—(mm,)"" Km‘ T ch —[’"l ™ jq}. 27)

my —m, m,—m,

Theorem 11. Forn,k>1,

k+n k+n
—(n+1) | M, —m
CkC—n+1 _Ck+1 -n :(mlmZ) )(;j(czz _(m] +m2)C1C2 +m1m2C12)' (28)
m, —m,
Theorem 12. Forn>1,
n— m3 —m3 ’
an+3 -C.C,c= (m1mz ) 1 (ﬁ (sz —(ml +m, )C1C2 + mlmZCf ) (29)
1 2

Theorem 13. Forn >1,

Cn+1Cn+2Cn+6 _C3+3
n-1
mm 2 (30)
= ﬁ(q —(my +m,)C,C, +mm,C; )((m1 —m, )2 (m,+my)C, (m1 m; ) C,., )
1 2
Theorem 14. For integers n,kand k—n>0,
) mk—n+1 _mk—n+l
C,C,~C, Gy, =(mm,)" ( ! 2 ](cj = (m, +m,)C,C, +mm,C}).
m, —m,
On replacing n by n+1 the above identity can also be written as:
k=n _ _ k-n
C.G-CGC = (mlmz )n_l (MJ(CZZ - (ml +m, )CICZ +mm,C} ) (1)
1 "
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Theorem 15. Forn>1,

CnCn—l - C11—2Cn+1 = (mlmz )n_3 <C22 - (ml +m, )C] Cz + m1m2C12 ) (32)
Theorem 16. For integers n,k ,
k_ ok
Cn+kCn+l - CnCn+k+] = (mlmz )’H (%J(sz - (ml +m, ) CICZ + mlmzcl2 ) (33)
1 2

Now taking n+k =r in the identity (33), we obtain the following identity.

Theorem 17. Let n+k=r,and r—n >0, we obtain

r—n

CC,,—CC,., =(mm)" [uj(C;—(m1+m2)C1C2+mlm2C12). (34)

Pl T
my, —m,

Theorem 18. Vajda's type identity. For integers n,k and 7,

k_ k ro_
CnCIHkﬂ‘ _ClrrCnJrk = (mlmZ )n_r_l [m] mz J(m] m2 j(czz _(ml +m2 )qCZ +mlm2q2)' (35)

my—m, )\ m —m,

Theorem 19. For integers n,k and r, taking k=m—n+r,

¢C,-C,.C,, =(mm)"" [m‘m = Zj ][n,: - ZZZ ](Cf ~(m +m)CC+mm,C). (36)
Theorem 20. Forn>1,
c.,c.c.c.-C!
= (C22 = (my +m,) C,C, +mm,C} )2 (m, +m, )2 (m,m, )2"75 (37)

+(mm, )”73 (C22 —(m, +m,)CC, +m1m2C]2)(ml2 +3mm, +m§)C3.

7. CONCLUSION

In conclusion, this study demonstrates the effectiveness and flexibility of closed-form generalized
solutions in addressing complex second-order linear recurrence relations. Through the derivation of
comprehensive generating functions and a generalized Binet-type formula, we have developed powerful
analytical tools for examining such recurrences. The successful formulation of new identities, along with
the generalization of classical results—including those of Cassini, Catalan, Vajda, and D’Ocagne—as
well as a sum formula for the first » terms of the sequences, highlights the strength and broad
applicability of our approach. Collectively, these findings offer a unified framework for understanding
and extending the properties of a wide class of second-order linear recurrence relations.
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