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This paper introduces a new aggregator, the Hesitant Triangular 

Fuzzy Generalized Geometric Heronian Mean (HTFGGHM). 

The hesitant triangular fuzzy set (HTFS) combined with the 

Generalized Geometric Heronian mean (GGHM), makes the 

HTFGGHM operator capable of ensuring reasonable 

aggregation through desirable indexes such as idempotency, 

monotonicity, and boundedness. As will be shown, it manages to 

retain the inherent uncertainty and correlation of the criteria 

while offering clear and coherent rankings. Incorporating the 

carefulness of hesitant fuzzy sets and the compute-intensive 

power of GGHM, the HTFGGHM operator improves the 

decision accuracy and hence serves as a handy tool to tackle 

vague situations in a multi-attribute decision-making process. 
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1. INTRODUCTION

Multi-Criteria Decision Making (MCDM), in recent years, has been identified as an important area of 

research since it can be applied in different fields such as economics, engineering, and management. 

MCDM problems usually require rating many alternatives based on conflicting criteria, making the 

decision-making process inherently multidimensional and complex (Liu & Shih, 2024). Those traditional 

methods work well under some circumscribed circumstances but generally struggle with the uncertainties 

and imprecision of real-world decision-making (Divsalar et al., 2023). 
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Fuzzy logic has become an attractive and widely used tool to model and treat uncertainty in decision-

making problems (Ying & Xin, 2024). Hesitant fuzzy sets, or fuzzy sets where experts are uncertain about 

their preferences and thus may have a range of potential values to describe each criterion have already been 

used in several fuzzy models (Li & Xu, 2024). A very easy but efficient model for this kind of uncertainty 

is the triangular fuzzy set, which is a special case of hesitant fuzzy sets (Fang, 2023). When paired with 

more complex aggregation approaches like the Generalized Geometric Heronian mean (GGHM), these 

models offer a rigorous, analytical framework for solving multi-faceted decision/policy-making problems. 

Hesitant fuzzy sets (HFS), introduced by Torra (2010), have become increasingly popular because 

they effectively capture the uncertainty in decision-making processes, especially when decision-makers are 

unsure and may offer multiple possible values or judgments for each option. In recent years, researchers 

have built on Torra’s foundational work, applying HFS to a wide range of decision-making scenarios, 

particularly when preferences are unclear or conflicting. This has led to a deeper understanding of how to 

handle uncertainty in complex decision-making situations. 

Liao and Xu (2014) introduces a method for selecting suppliers in MCDM, where hesitant fuzzy sets 

are used to represent uncertainty in the decision-makers' preferences. By applying an aggregation operator, 

the method combines multiple fuzzy values for each supplier, improving the accuracy of the selection 

process by better capturing the complex relationships between the criteria. Li and Xu (2024) emphasizes 

on HFS and their development such as normal wiggly based hesitant fuzzy sets (NWHFS) and mixed-

normal-based hesitant fuzzy sets MNHFS to accommodate vagueness and include probabilistic data for 

effective impulse-making in multi-attribute decision-making scenarios. Hasnan et al. (2024) introduces a 

method that combines triangular fuzzy numbers with the MEREC approach to make decision-making in 

complex scenarios more accurate and reliable. By addressing uncertainty and ambiguity, the method is 

demonstrated through halal supplier selection, showcasing its ability to handle real-world challenges and 

provide clear, informed decisions. 

Amman et al. (2024) proposed the concept of Dual-hesitant Fermatean fuzzy set (DHFFS), which 

applies Hamacher operations to make MCDM more effective through the management of both membership 

functions as well as non-membership hesitancy levels to aggregate complexity and develop improved 

solutions for MCDM in complex cases. Wang et al. (2024) fills the gaps of applying HFS in MCDM by 

proposing NWHFS for modeling to reduce errors of decision and interactions between criteria and 

alternatives. Xian et al. (2024) introduces a Z hesitant fuzzy linguistic term set (ZHFLTS) accompanied by 

visualization metric for mapping to T-spherical fuzzy space to MCDM and overcome the problems of 

ambiguity and randomness, particularly in traditional Chinese medicine (TCM). 

In recent years, the use of Hesitant Triangular Fuzzy Numbers (HTFN) in MCDM has gained 

significant attention. Gholizade et al. (2023) develops the Hesitant Triangular Fuzzy Sorting (HTFFS) 

method for sorting hesitant fuzzy sets and triangular fuzzy numbers for ranking the alternatives for MCDM 

with linguistic inputs under uncertainty. Pu et al. (2022)  introduces a decision-making method using 

Hesitant Triangular Fuzzy Power Aggregation (HTFPA) operators to handle uncertainty and attribute 

correlations, demonstrated through a futures product selection example. Anitha and Vidhya (2023) presents 

hesitant triangular fuzzy sets (HTFS) and propounds Dombi operation of hesitant triangular fuzzy Dombi 

weighted averaging and geometric operators: scoring technique to augment multi-attribute decision-making 

(MADM) process. Fany Helena (2024) proposes two new algorithms for MCDM based on Triangular 

Hesitant Fuzzy Sets (THFS), introducing mid-value ranking and ambiguity ranking methods to calculate 

expected values and determine criteria weights. The algorithms effectively handle uncertain and imprecise 

conditions, demonstrated through a case study on health issues, and highlight the advantages of THFS in 

addressing vague decision-making scenarios. Sultan et al. (2021) presents the hesitant fuzzy linear 

regression model (HFLRM) applying the symmetric triangular fuzzy numbers (STFN) to handle hesitant 

fuzzy data for MCDM and expounding more than the conventional fuzzy linear regression models. 
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Researchers have introduced several aggregation operators specifically designed for HTFN sets to 

effectively combine diverse opinions from different experts. For instance, Wang et al. (2014) examine the 

aggregation of hesitant triangular fuzzy data using Bonferroni means, which help capture the 

interrelationships between the combined values. Rodzi et al. (2021)  introduced a hesitant fuzzy MCDM 

approach that uses a z-score function along with hesitant degrees, deviation values, and weighted algorithms 

to effectively rank alternatives, as demonstrated in supplier selection scenarios. In addition, Tang et al. 

(2019) present dual hesitant Pythagorean fuzzy Heronian mean operators, which offer an alternative method 

for integrating information in hesitant Pythagorean fuzzy settings, providing a unique approach to handling 

uncertainty in decision-making. Nishad et al. (2023) presents a new aggregation operator for triangular 

fuzzy numbers in the context of hesitant fuzzy time series forecasting to refine the forecast where 

environment relations are comprehensive and imprecise. Wei et al. (2018) present the new q-rung orthopair 

fuzzy generalized Heronian mean (q-ROFGHM) operator is defined based on the generalized geometric 

Heronian mean (GHM) to verify its flexibility in upgrading MADM. Al-Quran (2021) presents a new 

MCDM method using T-Spherical Hesitant Fuzzy Sets (T-SHFS) to handle uncertainty more effectively 

by introducing aggregation operators like T-SHFWA and T-SHFWG, it demonstrates the usefulness in 

ranking alternatives, illustrated through a mobile phone selection example. 

Matejíčka (2013) discusses the weighted generalized Heronian mean, which extends the Heronian 

mean, and proves a double inequality containing two positive numbers to obtain optimal bounds for the 

weighted geometric mean, Seiffert mean, and logarithmic mean. Zhang and Ji (2011) offers the generalized 

Heronian mean when n-tuple positive real variables are available and establish the Schur-convexity, Schur-

geometric convexity, and Schur-harmonic convexity of the function in its efforts toward building the basis 

to study related means in mathematical analysis. 

The Generalized Geometric Heronian Mean (GGHM) is a new operator interpolating between the 

arithmetic and the geometric means, extendable for applications in the MCDM problems since it considers 

the interactions and weights of the criteria (Chu & Liu, 2015).  However, the traditional GGHM, the data 

assumed to be exact and not affected by either vagueness or hesitancy in evaluation which is not the case 

in real-world decisions (Li & Li, 2023). To fill this gap, Hesitant Triangular Fuzzy sets (HTFS) have been 

incorporated into the GGHM model. HTFS enables multiple membership values, which represent the 

vagueness and uncertainty represented in decision makers’ preference systems. This improves the stability 

of the aggregation process in MCDM and captures more effectively real-world dynamics and vagaries. 

Thus, the merger of HTF and GGHM provides a powerful means of solving MCDM problems, 

especially under conditions of high levels of uncertainty or when the data are conflicting. The HTF-GGHM 

operator solves the problem of multiple criteria evaluations, and uncertainty in the operator’s decision-

making process. Incorporating multiple perspectives and uncertainty elements makes this approach increase 

decision dependability. Integrating HTF can improve the evaluation by better management of different 

degrees of membership, enhancing the decision models. This research introduces HTF-GGHM as a viable 

solution in enhancing decision making accuracy under the conditions of uncertainty. 

The aim of this study is to propose a new aggregation operator which is called Hesitant Triangular 

Fuzzy Generalized Geometric Heronian Mean (HTF-GGHM) which combines hesitant triangular fuzzy 

numbers with the concept of GGHM for MCDM. The HTF-GGHM operator is anticipated to incorporate 

the inherent uncertainty and hesitancy in the judgments of the decision-makers about the assessments with 

an effective way of aggregating the fuzzy information. This research will investigate the underlying 

principles for HTF-GGHM. 

This paper is organized into distinct sections to provide a clear and structured presentation. Section 1 

introduces the research problem, emphasizing the challenges of uncertainty in Multi-Criteria Decision-

Making (MCDM) and the need for advanced aggregation methods. Section 2 outlines the fundamental 

concepts, including fuzzy sets, hesitant fuzzy sets, and triangular fuzzy numbers, which serve as the 

theoretical basis for the study. Section 3 proposes the Hesitant Triangular Fuzzy Generalized Geometric 
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Heronian Mean (HTFGGHM) operator, describing its development and properties such as idempotency, 

monotonicity, and boundedness. Section 4 concludes the paper by summarizing its contributions and 

suggesting future research directions for expanding its applicability in various decision-making contexts. 

2. PRELIMINARIES

Definition 1. Fuzzy set: (Zadeh, 1965): A fuzzy set A in a finite universe of discourse 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛} is defined as

𝐴 = {〈𝑥, 𝜇𝐴(𝑥)〉𝑥 ∈ 𝑋} (1) 

where μ𝐴(𝑥): 𝑋 → [0,1] represents the membership function of (𝐴) where 𝜇𝐴(𝑥) specifies the degree of

membership of an element𝑥 ∈ 𝑋 within 𝐴. Building on this, the concept of HFS was introduced by Torra 

(2010), allowing the membership degree of an element to encompass multiple possible values between 0 

and 1. HFS effectively capture situations where individuals express varying degrees of uncertainty in their 

preferences, enhancing decision-making by accommodating hesitancy. 

2.1 Hesitant Fuzzy Set (HFS) 

Definition 2. Hesitant Fuzzy set (Torra, 2010): Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a reference set. A set 𝐸 defined

in X is represented as 

𝐸 =  {〈𝑥, ℎ𝐸(𝑥)〉|𝑥 ∈  𝑋} (2) 

where ℎ𝐸(𝑥) is a set of various values within [0,1], representing the potential membership degrees of the

element 𝑥 ∈ 𝑋 in the set 𝐸. This is known as a hesitant fuzzy set. Additionally, Torra (2010) introduced 

the concepts of the “empty hesitant fuzzy set” and the “full hesitant fuzzy set” as follows: 

𝐸° = {〈𝑥, ℎ𝐸°(𝑥)〉|𝑥 ∈  𝑋} where ℎ𝐸°(𝑥) = {0} ∀𝑥 ∈ 𝑋,

𝐸∗ = {〈𝑥, ℎ𝐸∗(𝑥)〉|𝑥 ∈  𝑋} where ℎ𝐸∗(𝑥) = {1} ∀𝑥 ∈ 𝑋

2.2 Triangular Fuzzy Numbers 

Definition 3. Triangular Fuzzy Numbers (Van Laarhoven & Pedrycz, 1983): A triangular fuzzy 

number 𝑎̃ can be defined by a triplet (𝑎𝐿, 𝑎𝑀, 𝑎𝑈). The membership function 𝑢𝑎̃ (𝑥) is defined as:

𝑢𝑎̃ (𝑥) =

{

0,      𝑥 <  𝑎𝐿
𝑥 − 𝑎𝐿
𝑎𝑀 − 𝑎𝐿

,   𝑎𝐿 ≤ 𝑥 ≤ 𝑎𝑀

𝑎𝑈 − 𝑥

𝑎𝑈 − 𝑎𝑀
,   𝑎𝑀 ≤ 𝑥 ≤ 𝑎𝑈

0,  𝑥 <  𝑎𝑈  

(3) 

where 0 < 𝑎𝐿 ≤ 𝑎𝑀 ≤ 𝑎𝑈, 𝑎𝐿 and 𝑎𝑈 stand for the lower and upper values of the support of 𝑎̃, respectively,

and 𝑎𝑀 is the middle value.
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Definition 4 (Van Laarhoven & Pedrycz, 1983): Basic operational laws relating to triangular fuzzy 

numbers: 

𝑎̃  ⊕  𝑏̃ =  [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] ⊕ [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] = [𝑎𝐿 + 𝑏𝐿, 𝑎𝑀 + 𝑏𝑀, 𝑎𝑈 + 𝑏𝑈] (4) 

𝑎̃  ⊗   𝑏̃ =  [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] ⊗ [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] = [𝑎𝐿𝑏𝐿, 𝑎𝑀𝑏𝑀, 𝑎𝑈𝑏𝑈] (5) 

𝜆 ⊗   𝑎̃ = 𝜆  ⊗ [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] = [𝜆𝑎𝐿, 𝜆𝑎𝑀 , 𝜆𝑎𝑈], 𝜆 > 0 (6) 

Definition 5 (Xu, 2009): Let   𝑏̃
 
= [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] and     𝑎̃= [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] be two triangular fuzzy numbers, then 

the degree of possibility of a ≥ 𝑏 is defined as 

𝑝(𝑎 ≥  𝑏) =  λ max {1 − max [
𝑏𝑀 − 𝑎𝐿

𝑎𝑀 − 𝑎𝐿 + 𝑏𝑀 − 𝑏𝐿
, 0] , 0}

+ (1 −  λ)max {1 − 𝑚𝑎𝑥 [
𝑏𝑈 − 𝑎𝑀

𝑎𝑈 − 𝑎𝑀 + 𝑏𝑈 − 𝑏𝑀
, 0] , 0} 

(7) 

where the value λ is an index of rating attitude. It reflects the decision maker’s risk-bearing  attitude. If λ < 

0.5, the decision maker is risk averter. 

From definition 5, we can easily get the following results: 

(1) 0 ≤ 𝑝(𝑎̃   ≥  𝑏̃) ≤  1, 0 ≤  𝑝(𝑏̃
  
≥  𝑎̃)  ≤  1; (8) 

(2) 𝑝(𝑎̃   ≥  𝑏̃)  +  𝑝(𝑏̃
  
≥  𝑎̃)  =  1. (9) 

𝑝(𝑎̃   ≥  𝑎̃)  =  𝑝(𝑏̃
   
≥  𝑏̃)  =  0.5. (10) 

2.3 Hesitant Triangular Fuzzy Set (HTFS) 

Definition 6 (Zhao et al., 2014): Let 𝑋 be a fixed set, a hesitant triangular fuzzy set (HTFS) on 𝑋 is in 

terms of a function that when applied to each 𝑥 in 𝑋 and returns a subset of values in [0,1]. 

𝐸 =  {〈𝑥, ℎ𝐸(𝑥)〉|𝑥 ∈  𝑋} (11) 

where ℎ̃𝐸(𝑥) is a set of some possible triangular fuzzy values in [0,1], denoting the possible membership 

degrees of the element 𝑥 ∈ 𝑋 to the set E. For convenience, we call ℎ̃𝐸(𝑥) = ℎ̃1 = (𝛾𝐿, 𝛾𝑀, 𝛾𝑅) a hesitant

triangular fuzzy element (HTFE) and ℎ̃ the set of all HTFEs. 

Given three HTFEs, ℎ̃ = (𝛾𝐿, 𝛾𝑀, 𝛾𝑅), ℎ̃1 = (𝛾1
𝐿 , 𝛾1

𝑀, 𝛾1
𝑅), ℎ̃2 = (𝛾2

𝐿 , 𝛾2
𝑀 , 𝛾2

𝑅) and λ > 0, we define

their operations as follows:  

ℎ𝜆 =⋃{

𝛾∈ℎ

𝛾𝜆}; (12) 

𝜆ℎ =⋃{

𝛾∈ℎ

1 − (1 − 𝛾)𝜆}; (13) 

ℎ1⊕ℎ2 = ⋃ {

𝛾1∈ℎ1,𝛾2∈ℎ2

𝛾1 + 𝛾2 − 𝛾1𝛾2}
(14) 

ℎ1⊗ ℎ2 = ⋃ {

𝛾1∈ℎ1,𝛾2∈ℎ2

𝛾1𝛾2}. 
(15)
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Definition 7. Score Function (Xia & Xu, 2011): Consider a hesitant fuzzy element ℎ, the score function 

𝑆 of an HFE is defined as: 

𝑆(ℎ) =
1

#ℎ
∑𝛾

𝛾∈ℎ

 
(16) 

where #ℎ represents the total number of elements in ℎ. 

Definition 8. Let ℎ1 and  ℎ2  be two hesitant fuzzy elements with scores 𝑆(ℎ1) and 𝑆(ℎ2), respectively.

Then: 

(1) ℎ1is larger than ℎ2, denoted by ℎ1 > ℎ2 if 𝑆(ℎ1) > 𝑆(ℎ2)
(2) ℎ1 is considered equal to ℎ2 if 𝑆(ℎ1) = 𝑆(ℎ2).

2.4 Heronian Mean 

The Heronian Mean (HM) is an aggregation method notable for its capability to capture relationships 

among the inputs. The HM is defined as follows: 

Definition 9. Heronian Mean (Beliakov et al., 2007): For a set of nonnegative real numbers 𝑎𝑖 where 𝑖 =
1,2, … , 𝑛, the Heronian mean is defined as: 

𝐻𝑀(𝑎1, 𝑎2, … , 𝑎𝑛) =
2

𝑛(𝑛 + 1)
∑ √𝑎𝑖𝑎𝑗

𝑛

𝑖,𝑗=1

. (17) 

Definition 10. Geometric Heronian Mean (Yu, 2013): Geometric Heronian Mean (GHM) for a set of 

nonnegative real numbers 𝑎𝑖, where 𝑖 = 1,2, … , 𝑛, which is defined by:

𝐺𝐻𝑀(𝑎1, 𝑎2, … , 𝑎𝑛) = ∏ (
𝑎𝑖 + 𝑎𝑗

2
)

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1

. (18) 

Definition 11. Generalized Geometric Heronian Mean  (Yu, 2013): For nonnegative real numbers 𝑎𝑖
where 𝑖 = 1,2, … , 𝑛 and parameters 𝑝, 𝑞 ≥ 0 (with 𝑝 and 𝑞 not both equal to 0), the Generalized Geometric 

Heronian Mean is defined as: 

𝐺𝐺𝐻𝑀𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) =
1

𝑝 + 𝑞
∏(𝑝𝑎𝑖 + 𝑞𝑎𝑗)

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1

. (19) 

The properties of 𝐺𝐺𝐻𝑀𝑝,𝑞  are as follows:

(i) 𝐺𝐺𝐻𝑀𝑝,𝑞(0,0, … ,0) = 0 and 𝐺𝐺𝐻𝑀𝑝,𝑞(1,1, … ,1) = 1;
(ii) 𝐺𝐺𝐻𝑀𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝑎  if all 𝑎𝑖 = 𝑎;

(iii) If (𝑎𝑖 ≤ 𝑏𝑖) ∀(𝑖), then 𝐺𝐺𝐻𝑀𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) ≤ 𝐺𝐺𝐻𝑀
𝑝,𝑞(𝑏1, 𝑏2, … , 𝑏𝑛), indicating

𝐺𝐺𝐻𝑀𝑝,𝑞  is monotonic;

(iv) min
𝑖
{ 𝑎𝑖} ≤ 𝐺𝐺𝐻𝑀𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) ≤ max

𝑖
{ 𝑎𝑖}

In the next section, the GGHM is extended to a hesitant fuzzy context with the following proposed 

methods: 

(i) The hesitant triangular fuzzy generalized geometric Heronian mean (HFGGHM).
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(ii) The weighted hesitant triangular fuzzy generalized geometric Heronian mean

(WHTFGGHM).

3. PROPOSED HESITANT TRIANGULAR FUZZY GENERALIZED GEOMETRIC

HERONIAN MEAN (HTFGGHM)

Definition 12. Hesitant Triangular Fuzzy Generalized Geometric Heronian Mean: Let 𝑝, 𝑞 > 0 and 

let ℎ𝑖= (𝑙𝑖 , 𝑚𝑖,𝑢𝑖) be a collection of hesitant fuzzy triangular elements. The hesitant triangular fuzzy

generalized geometric Heronian mean 𝐻𝑇𝐹𝐺𝐺𝐻𝑀𝑝,𝑞 is defined as:

𝐻𝑇𝐹𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ1, ℎ2, … , ℎ𝑛) =
1

𝑝 + 𝑞
⨂ ((𝑝ℎ𝑖⊕ 𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕𝑞ℎ𝑖))

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

, (20) 

where ⊕ and ⊗ denote the operations applied according to the laws of hesitant fuzzy elements. 

Theorem 1. Let 𝑝, 𝑞 > 0 and let  ℎ𝑖= (𝑙𝑖 , 𝑚𝑖,𝑢𝑖) be a collection of hesitant triangular fuzzy elements. Then

the aggregated value obtained using the 𝐻𝑇𝐹𝐺𝐺𝐻𝑀𝑝,𝑞 operator is also a hesitant triangular fuzzy element,

and  

𝐻𝑇𝐹𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ1, ℎ2, … , ℎ𝑛) =
1

𝑝 + 𝑞
⨂ ((𝑝ℎ𝑖⊕ 𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕𝑞ℎ𝑖))

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

, 

which can also be expressed as: 

= 1 − (1 − ∏ η
𝑖,𝑗

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞

= 1 − [1 − ∏ ((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 −𝑛
𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑙𝑗)
𝑞
)) ∙ ((1 − (1 − 𝑙𝑗)

𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
) ∙ (1 − (1 −

𝑙𝑖)
𝑞))

2

𝑛(𝑛+1)
]

1

𝑝+𝑞

, 1 − [1 − ∏ ((1 − (1 − 𝑚𝑖)
𝑝) + (1 − (1 − 𝑚𝑗)

𝑞
) − (1 −𝑛

𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑚𝑖)
𝑝) ∙ (1 − (1 − 𝑚𝑗)

𝑞
)) ∙ ((1 − (1 − 𝑚𝑗)

𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 −

𝑚𝑗)
𝑝
) ∙ (1 − (1 − 𝑚𝑖)

𝑞))

2

𝑛(𝑛+1)
]

1

𝑝+𝑞

, 1 − [1 − ∏ ((1 − (1 − 𝑢𝑖)
𝑝) + (1 − (1 −𝑛

𝑖,𝑗=1;𝑖≤𝑗

𝑢𝑗)
𝑞
) − (1 − (1 − 𝑢𝑖)

𝑝) ∙ (1 − (1 − 𝑢𝑗)
𝑞
)) ∙ ((1 − (1 − 𝑢𝑗)

𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) −

(1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1 − (1 − 𝑢𝑖)

𝑞))

2

𝑛(𝑛+1)
]

1

𝑝+𝑞

. 

(21) 

Here, η𝑖,𝑗represents the individual elements within the hesitant fuzzy sets involved in the aggregation.

𝑝ℎ𝑖 ⊕ 𝑞ℎ𝑗=
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By referring to equation (13), we’ll get 

𝑝ℎ𝑖 = {1 − (1 − 𝑙𝑖)
𝑝, 1 − (1 − 𝑚𝑖)

𝑝, 1 − (1 − 𝑢𝑖)
𝑝}

𝑞ℎ𝑗 = {1 − (1 − 𝑙𝑗)
𝑞
, 1 − (1 −𝑚𝑗)

𝑞
, 1 − (1 − 𝑢𝑗)

𝑞
}

𝑝ℎ𝑗 = {1 − (1 − 𝑙𝑗)
𝑝
, 1 − (1 − 𝑚𝑗)

𝑝
, 1 − (1 − 𝑢𝑗)

𝑝
}

𝑞ℎ𝑖 = {1 − (1 − 𝑙𝑖)
𝑞 , 1 − (1 −𝑚𝑖)

𝑞 , 1 − (1 − 𝑢𝑖)
𝑞}

Proof:  Using equation (14), we get 

𝑨𝒅𝒅𝒊𝒕𝒊𝒐𝒏(⊕): 𝑝ℎ𝑖⊕ 𝑞ℎ𝑗

= (

(1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
),

(1 − (1 − 𝑚𝑖)
𝑝) + (1 − (1 − 𝑚𝑗)

𝑞
) − (1 − (1 − 𝑚𝑖)

𝑝) ∙ (1 − (1 − 𝑚𝑗)
𝑞
),

(1 − (1 − 𝑢𝑖)
𝑝) + (1 − (1 − 𝑢𝑗)

𝑞
) − (1 − (1 − 𝑢𝑖)

𝑝) ∙ (1 − (1 − 𝑢𝑗)
𝑞
)

) 

𝑨𝒅𝒅𝒊𝒕𝒊𝒐𝒏(⊕): 𝑝ℎ𝑗⊕ 𝑞ℎ𝑖

= (

(1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
) ∙ (1 − (1 − 𝑙𝑖)

𝑞),

(1 − (1 − 𝑚𝑗)
𝑝
) + (1 − (1 −𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
) ∙ (1 − (1 − 𝑚𝑖)

𝑞),

(1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1 − (1 − 𝑢𝑖)

𝑞)

) 

By equation (15), we get 

(𝑝ℎ𝑖 ⊕𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕ 𝑞ℎ𝑖) =

[((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
))

∙ ((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
)

∙ (1 − (1 − 𝑙𝑖)
𝑞)) , ((1 − (1 − 𝑚𝑖)

𝑝) + (1 − (1 − 𝑚𝑗)
𝑞
)

− (1 − (1 − 𝑚𝑖)
𝑝) ∙ (1 − (1 −𝑚𝑗)

𝑞
))

∙ ((1 − (1 − 𝑚𝑗)
𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
)

∙ (1 − (1 − 𝑚𝑖)
𝑞)) , ((1 − (1 − 𝑢𝑖)

𝑝) + (1 − (1 − 𝑢𝑗)
𝑞
)

− (1 − (1 − 𝑢𝑖)
𝑝) ∙ (1 − (1 − 𝑢𝑗)

𝑞
))

∙ ((1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1

− (1 − 𝑢𝑖)
𝑞))]
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From equation (12), 

((𝑝ℎ𝑖⊕ 𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕𝑞ℎ𝑖))

2
𝑛(𝑛+1)

= 

[((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
))

∙ ((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
)

∙ (1 − (1 − 𝑙𝑖)
𝑞))

2
𝑛(𝑛+1)

, ((1 − (1 − 𝑚𝑖)
𝑝) + (1 − (1 − 𝑚𝑗)

𝑞
)

− (1 − (1 − 𝑚𝑖)
𝑝) ∙ (1 − (1 − 𝑚𝑗)

𝑞
))

∙ ((1 − (1 −𝑚𝑗)
𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
)

∙ (1 − (1 − 𝑚𝑖)
𝑞))

2
𝑛(𝑛+1)

, ((1 − (1 − 𝑢𝑖)
𝑝) + (1 − (1 − 𝑢𝑗)

𝑞
)

− (1 − (1 − 𝑢𝑖)
𝑝) ∙ (1 − (1 − 𝑢𝑗)

𝑞
))

∙ ((1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1

− (1 − 𝑢𝑖)
𝑞))

2
𝑛(𝑛+1)] 

By referring to equation (15), 

∏ (𝑝ℎ𝑖 ⊕𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕ 𝑞ℎ𝑖)
2

𝑛(𝑛+1)𝑛
𝑖,𝑗=1;𝑖≤𝑗 = 

∏ ((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
)) ∙𝑛

𝑖,𝑗=1;𝑖≤𝑗

((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
) ∙ (1 − (1 −

𝑙𝑖)
𝑞))

2

𝑛(𝑛+1)
, ∏ ((1 − (1 − 𝑚𝑖)

𝑝) + (1 − (1 − 𝑚𝑗)
𝑞
) − (1 − (1 − 𝑚𝑖)

𝑝) ∙ (1 −𝑛
𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑚𝑗)
𝑞
)) ∙ ((1 − (1 − 𝑚𝑗)

𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 −𝑚𝑗)
𝑝
) ∙ (1 − (1 −

𝑚𝑖)
𝑞))

2

𝑛(𝑛+1)
, ∏ ((1 − (1 − 𝑢𝑖)

𝑝) + (1 − (1 − 𝑢𝑗)
𝑞
) − (1 − (1 − 𝑢𝑖)

𝑝) ∙ (1 −𝑛
𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑢𝑗)
𝑞
)) ∙ ((1 − (1 − 𝑢𝑗)

𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1 − (1 −

𝑢𝑖)
𝑞))

2

𝑛(𝑛+1)

By referring equation (13), we’ll get 

1

𝑝 + 𝑞
⨂ ((𝑝ℎ𝑖 ⊕𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗 ⊕𝑞ℎ𝑖))

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

= 1 − (1 − ∏ η
𝑖,𝑗

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞
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= 1 − [1 − ∏ ((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
)) ∙𝑛

𝑖,𝑗=1;𝑖≤𝑗

((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
) ∙ (1 − (1 − 𝑙𝑖)

𝑞))

2

𝑛(𝑛+1)
]

1

𝑝+𝑞

, 1 − [1 −

∏ ((1 − (1 − 𝑚𝑖)
𝑝) + (1 − (1 − 𝑚𝑗)

𝑞
) − (1 − (1 − 𝑚𝑖)

𝑝) ∙ (1 − (1 − 𝑚𝑗)
𝑞
)) ∙ ((1 −𝑛

𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑚𝑗)
𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
) ∙ (1 − (1 − 𝑚𝑖)

𝑞))

2

𝑛(𝑛+1)
]

1

𝑝+𝑞

, 1 − [1 −

∏ ((1 − (1 − 𝑢𝑖)
𝑝) + (1 − (1 − 𝑢𝑗)

𝑞
) − (1 − (1 − 𝑢𝑖)

𝑝) ∙ (1 − (1 − 𝑢𝑗)
𝑞
)) ∙ ((1 −𝑛

𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1 − (1 − 𝑢𝑖)

𝑞))
2

𝑛(𝑛+1)]

1

𝑝+𝑞

Equation (21) has been proven.  

Proposition 2. Let ℎ𝛼𝑖 and ℎ𝛽𝑖 be two collections of HTEs, η𝑖,𝑗,𝑖<𝑗 = (𝑝ℎ𝛼𝑖 ⊕𝑞ℎ𝛼𝑗 ) ⊗ (𝑝ℎ𝛼𝑗 ⊕𝑞ℎ𝛼𝑖)

and η𝑖,𝑗,𝑖<𝑗 = (𝑝ℎ𝛽𝑖 ⊕𝑞ℎ𝛽𝑗 ) ⊗ (𝑝ℎ𝛽𝑗 ⊕ 𝑞ℎ𝛽𝑖). If for any 𝛾𝛼𝑖 ∈ ℎ𝛼𝑖 and 𝛾𝛽𝑖 ∈ ℎ𝛽𝑖 (𝑖, 𝑗 = 1,2, … , 𝑛; 𝑖 ≠ 𝑗),

we have 𝛾𝛼𝑖 ≤ 𝛾𝛽𝑖  and 𝛾𝛼𝑗 ≤ 𝛾𝛽𝑗, then η𝛼𝑖,𝑗,𝑖<𝑗 ≤ η𝛽𝑖,𝑗,𝑖<𝑗.

Proposition 3. Let ℎ𝑖(𝑖 = 1,2, … , 𝑛) be a collection of HTFEs, η𝑖𝑗,𝑖<𝑗 = (𝑝ℎ𝑖 ⊕𝑞ℎ𝑗)⊗ (𝑝ℎ𝑗⊕ 𝑞ℎ𝑖) and

ℎ𝑖
− = ⋃ (𝑚𝑖𝑛{𝛾𝑖

𝐿},𝑚𝑖𝑛{𝛾𝑖
𝑀},𝑚𝑖𝑛{𝛾𝑖

𝑈}),𝛾𝑖∈ℎ𝑖
ℎ𝑖
+ = ⋃ (𝑚𝑎𝑥{𝛾𝑖

𝐿},𝑚𝑎𝑥{𝛾𝑖
𝑀},𝑚𝑎𝑥{𝛾𝑖

𝑈}), 𝑖, 𝑗 ∈𝛾𝑖∈ℎ𝑖

{1,2, … , 𝑛}; then 

⋃ ((1 − (1 − 𝛾−𝐿)𝑝+𝑞)𝟐, (1 − (1 − 𝛾−𝑀)𝑝+𝑞)𝟐, (1 − (1 − 𝛾−𝑈)𝑝+𝑞)𝟐)

𝜸−∈ℎ𝒊
−

≤ ⋃ ((1 − (1 − 𝛾+𝐿)𝑝+𝑞)𝟐, (1 − (1 − 𝛾+𝑀)𝑝+𝑞)𝟐, (1

𝜸+∈ℎ𝒊
+

− (1 − 𝛾+𝑈)𝑝+𝑞)𝟐)

(22) 

Theorem 4. Idempotency property: 𝐴 = (𝑙𝑖 , 𝑚𝑖,𝑢𝑖)(𝑖 = 1,2, … , 𝑛) represent a set of HTFEs. If 𝐴𝑖 =

(𝑙𝑖 , 𝑚𝑖,𝑢𝑖) for all 𝑖, then 𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀𝑝,𝑞(𝐴1,𝐴2, … , 𝐴𝑛) = 𝑎.

Proven since 𝐴𝑖 = (𝑙𝑖 , 𝑚𝑖,𝑢𝑖)(𝑖 = 1,2,… , 𝑛) , then,

𝐺𝐺𝐻𝑀𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) =
1

𝑝 + 𝑞
∏(𝑝𝑎𝑖 + 𝑞𝑎𝑗)

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1

 

=
1

𝑝 + 𝑞
[∏(𝑝𝑎 + 𝑞𝑎)

𝑛

𝑖,𝑗=1

]

2
𝑛(𝑛+1)

=
1

𝑝 + 𝑞
[∏(𝑎(𝑝𝑎 + 𝑞𝑎))

𝑛(𝑛+1)
2

𝑛

𝑖,𝑗=1

]

2
𝑛(𝑛+1)

(23)
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 =
1

𝑝+𝑞
[(𝑎(𝑝 + 𝑞))

𝑛(𝑛+1)

2 ]

2

𝑛(𝑛+1)

= 𝑎 

Theorem 5. Monotonicity property: Let ℎ𝛼𝑖  and ℎ𝛽𝑖 (𝑖 = 1,2, … , 𝑛) be two collections of HTFEs; if , for

any 𝛾𝛼𝑖 ≤ ℎ𝛼𝑖  and 𝛾𝛽𝑗 ≤ ℎ𝛽𝑗(𝑖, 𝑗 = 1,2, … , 𝑛; 𝑖 ≠ 𝑗), one has 𝛾𝛼𝑖 ≤ 𝛾𝛽𝑖  and 𝛾𝛼𝑗 ≤ 𝛾𝛽𝑗 . Then,

𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ𝛼1 , ℎ𝛼2 , … , ℎ𝛼𝑛) ≤ 𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀
𝑝,𝑞(ℎ𝛽1 , ℎ𝛽2 , … , ℎ𝛽𝑛)

Proof: By proposition 2, we get η𝛼𝑖𝑗 ≤ η𝛽𝑖𝑗 , 𝑖, 𝑗 ∈ {1,2, … , 𝑛}, 𝑖 ≠ 𝑗

Then  

1 − (1 − ∏ η𝛼𝑖,𝑗

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞

≤ 1 − (1 − ∏ η𝛽𝑖,𝑗

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞

(24) 

By definition 7, we acquire: 

𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ𝛼1 , ℎ𝛼2 , … , ℎ𝛼𝑛)

=
1

𝑝 + 𝑞
⨂ (η𝛼𝑖𝑗)

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

= ⋃

{

1− (1 − ∏ η𝛼𝑖,𝑗

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞

}
η𝑖,𝑗∈𝜎𝑖,𝑖≤𝑗

≤ ⋃

{

1 − (1 − ∏ η𝛽𝑖,𝑗

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞

}
η𝑖,𝑗∈𝜎𝑖,𝑖≤𝑗

=
1

𝑝 + 𝑞
⨂ (η𝛽𝑖𝑗)

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

= 𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ𝛽1 , ℎ𝛽2 , … , ℎ𝛽𝑛)

(25) 

Theorem 6. Boundedness: Let ℎ𝑖(𝑖 = 1,2, … , 𝑛 ) be a collection of HTEs, ℎ𝑖
− =

⋃ (𝑚𝑖𝑛{𝛾𝑖
𝐿},𝑚𝑖𝑛{𝛾𝑖

𝑀},𝑚𝑖𝑛{𝛾𝑖
𝑈}),𝛾𝑖∈ℎ𝑖

ℎ𝑖
+ = ⋃ (𝑚𝑎𝑥{𝛾𝑖

𝐿},𝑚𝑎𝑥{𝛾𝑖
𝑀},𝑚𝑎𝑥{𝛾𝑖

𝑈}), 𝑖, 𝑗 ∈ {1,2, … , 𝑛};𝛾𝑖∈ℎ𝑖

then  
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⋃ (((1 − (1 − 𝛾−𝐿)𝑝+𝑞)𝟐)
1

𝑝+𝑞 , ((1 − (1 − 𝛾−𝑀)𝑝+𝑞)𝟐)
1

𝑝+𝑞 , ((1

𝜸−∈ℎ𝒊
−

− (1 − 𝛾−𝑈)𝑝+𝑞)𝟐)
1

𝑝+𝑞) ≤ 𝐻𝑇𝐹𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ1, ℎ2, … , ℎ𝑛)

≤ ⋃ (((1 − (1 − 𝛾+𝐿)𝑝+𝑞)2)
1

𝑝+𝑞 , ((1

𝜸+∈ℎ𝒊
+

− (1 − 𝛾+𝑀)𝑝+𝑞)𝟐)
1

𝑝+𝑞 , ((1 − (1 − 𝛾+𝑈)𝑝+𝑞)𝟐)
1

𝑝+𝑞) 

(26) 

Proof: By Proposition 3, we have 

⋃ ((1 − (1 − 𝛾−𝐿)𝑝+𝑞)𝟐, (1 − (1 − 𝛾−𝑀)𝑝+𝑞)𝟐, (1 − (1 − 𝛾−𝑈)𝑝+𝑞)𝟐)

𝜸−∈ℎ𝒊
−

≤ 𝜂𝒊𝒋,𝒊<𝒋

≤ ⋃ ((1 − (1 − 𝛾+𝐿)𝑝+𝑞)𝟐, (1 − (1 − 𝛾+𝑀)𝑝+𝑞)𝟐, (1

𝜸+∈ℎ𝒊
+

− (1 − 𝛾+𝑈)𝑝+𝑞)𝟐)

So 

⋃ (((1 − (1 − 𝛾−𝐿)𝑝+𝑞)𝟐)
1

𝑝+𝑞 , ((1 − (1 − 𝛾−𝑀)𝑝+𝑞)𝟐)
1

𝑝+𝑞 , ((1

𝜸−∈ℎ𝒊
−

− (1 − 𝛾−𝑈)𝑝+𝑞)𝟐)
1

𝑝+𝑞) ≤ 1 − (1 − ∏ η
𝑖,𝑗

2
𝑛(𝑛+1)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞

≤ ⋃ (((1 − (1 − 𝛾+𝐿)𝑝+𝑞)2)
1

𝑝+𝑞 , ((1 − (1 − 𝛾+𝑀)𝑝+𝑞)𝟐)
1

𝑝+𝑞 , ((1

𝜸+∈ℎ𝒊
+

− (1 − 𝛾+𝑈)𝑝+𝑞)𝟐)
1

𝑝+𝑞) 

(27) 

By definition 7, we complete the proof. 

Theorem 7.  Suppose 𝑝, 𝑞 > 0 and let  ℎ𝑖= (𝑙𝑖 , 𝑚𝑖,𝑢𝑖) represent a set of hesitant triangular fuzzy elements,

accompanied by a weight vector 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 where 𝑤𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛 and ∑ 𝑤𝑖 = 1

𝑛
𝑖=1  . Then

the aggregated value derived using the 𝑾𝑯𝑻𝑭𝑮𝑮𝑯𝑴𝒑,𝒒 operator is also a hesitant triangular fuzzy

element, and 

𝑾𝑯𝑻𝑭𝑮𝑮𝑯𝑴𝒑,𝒒(ℎ1, ℎ2, … , ℎ𝑛)𝑠 =
1

𝑝 + 𝑞
⨂ ((𝑝ℎ𝑖⊕ 𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕𝑞ℎ𝑖))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

, 
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 which can also be expressed as: 

= ⋃

{

1 − (1 − ∏ 𝜂𝑖,𝑗

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

)

1
𝑝+𝑞

}

 

𝜂𝑖,𝑗∈𝜎𝑖,𝑗;𝑖≤𝑗

= 1 − [1 − ∏ ((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 −𝑛
𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑙𝑗)
𝑞
)) ∙ ((1 − (1 − 𝑙𝑗)

𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
) ∙ (1 − (1 −

𝑙𝑖)
𝑞))

2𝑤𝑖𝑤𝑗

(1+𝑤𝑖)]

1

𝑝+𝑞

, 1 − [1 − ∏ ((1 − (1 −𝑚𝑖)
𝑝) + (1 − (1 − 𝑚𝑗)

𝑞
) − (1 −𝑛

𝑖,𝑗=1;𝑖≤𝑗

(1 − 𝑚𝑖)
𝑝) ∙ (1 − (1 − 𝑚𝑗)

𝑞
)) ∙ ((1 − (1 − 𝑚𝑗)

𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 −

𝑚𝑗)
𝑝
) ∙ (1 − (1 − 𝑚𝑖)

𝑞))

2𝑤𝑖𝑤𝑗

(1+𝑤𝑖)]

1

𝑝+𝑞

, 1 − [1 − ∏ ((1 − (1 − 𝑢𝑖)
𝑝) + (1 − (1 −𝑛

𝑖,𝑗=1;𝑖≤𝑗

𝑢𝑗)
𝑞
) − (1 − (1 − 𝑢𝑖)

𝑝) ∙ (1 − (1 − 𝑢𝑗)
𝑞
)) ∙ ((1 − (1 − 𝑢𝑗)

𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) −

(1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1 − (1 − 𝑢𝑖)

𝑞))

2𝑤𝑖𝑤𝑗

(1+𝑤𝑖)]

1

𝑝+𝑞

(28) 

Here, η𝑖,𝑗represents the individual elements within the hesitant fuzzy sets involved in the aggregation. 

𝑝ℎ𝑖 ⊕ 𝑞ℎ𝑗=

By referring to equation (13), we get 

𝑝ℎ𝑖 = {1 − (1 − 𝑙𝑖)
𝑝, 1 − (1 −𝑚𝑖)

𝑝, 1 − (1 − 𝑢𝑖)
𝑝}

𝑞ℎ𝑗 = {1 − (1 − 𝑙𝑗)
𝑞
, 1 − (1 − 𝑚𝑗)

𝑞
, 1 − (1 − 𝑢𝑗)

𝑞
}

𝑝ℎ𝑗 = {1 − (1 − 𝑙𝑗)
𝑝
, 1 − (1 −𝑚𝑗)

𝑝
, 1 − (1 − 𝑢𝑗)

𝑝
}

𝑞ℎ𝑖 = {1 − (1 − 𝑙𝑖)
𝑞 , 1 − (1 − 𝑚𝑖)

𝑞 , 1 − (1 − 𝑢𝑖)
𝑞}

Proof:  Using equation (14), we get 

𝑨𝒅𝒅𝒊𝒕𝒊𝒐𝒏(⊕): 𝑝ℎ𝑖⊕ 𝑞ℎ𝑗

= (

(1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
),

(1 − (1 − 𝑚𝑖)
𝑝) + (1 − (1 − 𝑚𝑗)

𝑞
) − (1 − (1 − 𝑚𝑖)

𝑝) ∙ (1 − (1 − 𝑚𝑗)
𝑞
),

(1 − (1 − 𝑢𝑖)
𝑝) + (1 − (1 − 𝑢𝑗)

𝑞
) − (1 − (1 − 𝑢𝑖)

𝑝) ∙ (1 − (1 − 𝑢𝑗)
𝑞
)

) 
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𝑨𝒅𝒅𝒊𝒕𝒊𝒐𝒏(⊕): 𝑝ℎ𝑗⊕ 𝑞ℎ𝑖

= (

(1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
) ∙ (1 − (1 − 𝑙𝑖)

𝑞),

(1 − (1 − 𝑚𝑗)
𝑝
) + (1 − (1 −𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
) ∙ (1 − (1 − 𝑚𝑖)

𝑞),

(1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1 − (1 − 𝑢𝑖)

𝑞)

) 

By equation (15), we’ll get 

(𝑝ℎ𝑖 ⊕𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕ 𝑞ℎ𝑖) =

[((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
))

∙ ((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
)

∙ (1 − (1 − 𝑙𝑖)
𝑞)) , ((1 − (1 − 𝑚𝑖)

𝑝) + (1 − (1 − 𝑚𝑗)
𝑞
)

− (1 − (1 − 𝑚𝑖)
𝑝) ∙ (1 − (1 −𝑚𝑗)

𝑞
))

∙ ((1 − (1 − 𝑚𝑗)
𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
)

∙ (1 − (1 − 𝑚𝑖)
𝑞)) , ((1 − (1 − 𝑢𝑖)

𝑝) + (1 − (1 − 𝑢𝑗)
𝑞
)

− (1 − (1 − 𝑢𝑖)
𝑝) ∙ (1 − (1 − 𝑢𝑗)

𝑞
))

∙ ((1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1

− (1 − 𝑢𝑖)
𝑞))]

From equation (12), 

((𝑝ℎ𝑖⊕ 𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗⊕𝑞ℎ𝑖))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖) = 
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[((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
))

∙ ((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
)

∙ (1 − (1 − 𝑙𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖) , ((1 − (1 −𝑚𝑖)

𝑝) + (1 − (1 −𝑚𝑗)
𝑞
)

− (1 − (1 − 𝑚𝑖)
𝑝) ∙ (1 − (1 − 𝑚𝑗)

𝑞
))

∙ ((1 − (1 − 𝑚𝑗)
𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
)

∙ (1 − (1 −𝑚𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖) , ((1 − (1 − 𝑢𝑖)

𝑝) + (1 − (1 − 𝑢𝑗)
𝑞
)

− (1 − (1 − 𝑢𝑖)
𝑝) ∙ (1 − (1 − 𝑢𝑗)

𝑞
))

∙ ((1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1

− (1 − 𝑢𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)] 

By referring to equation (15), 

∏ (𝑝ℎ𝑖⊕ 𝑞ℎ𝑗) ⊗ (𝑝ℎ𝑗 ⊕𝑞ℎ𝑖)
2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

= 
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∏ ((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝) ∙ (1 − (1 − 𝑙𝑗)
𝑞
))

𝑛

𝑖,𝑗=1;𝑖≤𝑗

∙ ((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
)

∙ (1 − (1 − 𝑙𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖) , ∏ ((1 − (1 − 𝑚𝑖)

𝑝) + (1 − (1 − 𝑚𝑗)
𝑞
)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

− (1 − (1 − 𝑚𝑖)
𝑝) ∙ (1 − (1 − 𝑚𝑗)

𝑞
))

∙ ((1 − (1 − 𝑚𝑗)
𝑝
) + (1 − (1 −𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
)

∙ (1 − (1 − 𝑚𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖) , ∏ ((1 − (1 − 𝑢𝑖)

𝑝) + (1 − (1 − 𝑢𝑗)
𝑞
)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

− (1 − (1 − 𝑢𝑖)
𝑝) ∙ (1 − (1 − 𝑢𝑗)

𝑞
))

∙ ((1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1

− (1 − 𝑢𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖) 

By referring to equation (13), we’ll get 

1

𝑝 + 𝑞
⨂ ((𝑝ℎ𝑖 ⊕𝑞ℎ𝑗)⊗ (𝑝ℎ𝑗⊕ 𝑞ℎ𝑖))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

 

= 1 − (1 −∏ η
𝑖,𝑗

2𝑤𝑖𝑤𝑗

(1+𝑤𝑖)𝑛
𝑖,𝑗=1;𝑖≤𝑗 )

1

𝑝+𝑞
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= 1 − [1 − ∏ ((1 − (1 − 𝑙𝑖)
𝑝) + (1 − (1 − 𝑙𝑗)

𝑞
) − (1 − (1 − 𝑙𝑖)

𝑝)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

∙ (1 − (1 − 𝑙𝑗)
𝑞
))

∙ ((1 − (1 − 𝑙𝑗)
𝑝
) + (1 − (1 − 𝑙𝑖)

𝑞) − (1 − (1 − 𝑙𝑗)
𝑝
)

∙ (1 − (1 − 𝑙𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)]

1
𝑝+𝑞

, 1

− [1

− ∏ ((1 − (1 − 𝑚𝑖)
𝑝) + (1 − (1 − 𝑚𝑗)

𝑞
) − (1 − (1 − 𝑚𝑖)

𝑝)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

∙ (1 − (1 − 𝑚𝑗)
𝑞
))

∙ ((1 − (1 −𝑚𝑗)
𝑝
) + (1 − (1 − 𝑚𝑖)

𝑞) − (1 − (1 − 𝑚𝑗)
𝑝
)

∙ (1 − (1 − 𝑚𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)]

1
𝑝+𝑞

, 1

− [1

− ∏ ((1 − (1 − 𝑢𝑖)
𝑝) + (1 − (1 − 𝑢𝑗)

𝑞
) − (1 − (1 − 𝑢𝑖)

𝑝)

𝑛

𝑖,𝑗=1;𝑖≤𝑗

∙ (1 − (1 − 𝑢𝑗)
𝑞
))

∙ ((1 − (1 − 𝑢𝑗)
𝑝
) + (1 − (1 − 𝑢𝑖)

𝑞) − (1 − (1 − 𝑢𝑗)
𝑝
) ∙ (1

− (1 − 𝑢𝑖)
𝑞))

2𝑤𝑖𝑤𝑗
(1+𝑤𝑖)]

1
𝑝+𝑞

Equation (28) has been proven. 

Theorem 8. Idempotency property: 𝐴 = (𝑙𝑖 , 𝑚𝑖,𝑢𝑖)(𝑖 = 1,2, … , 𝑛) represent a set of HTFEs. If 𝐴𝑖 =

(𝑙𝑖 , 𝑚𝑖,𝑢𝑖) for all 𝑖, then 𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀𝑝,𝑞(𝐴1,𝐴2, … , 𝐴𝑛) = 𝑎.

This theorem is proved in the same way as theorem 4. 
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Theorem 9. Monotonicity property: Let ℎ𝛼𝑖  and ℎ𝛽𝑖 (𝑖 = 1,2, … , 𝑛) be two collections of HTFEs; if , for

any 𝛾𝛼𝑖 ≤ ℎ𝛼𝑖  and 𝛾𝛽𝑗 ≤ ℎ𝛽𝑗(𝑖, 𝑗 = 1,2, … , 𝑛; 𝑖 ≠ 𝑗), one has 𝛾𝛼𝑖 ≤ 𝛾𝛽𝑖  and 𝛾𝛼𝑗 ≤ 𝛾𝛽𝑗 , then

𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ𝛼1 , ℎ𝛼2 , … , ℎ𝛼𝑛) ≤ 𝐻𝑇𝐹 − 𝐺𝐺𝐻𝑀𝑝,𝑞(ℎ𝛽1 , ℎ𝛽2 , … , ℎ𝛽𝑛).

This theorem is proved in the same way as theorem 5. 

Theorem 10. Boundedness: Let ℎ𝑖(𝑖 = 1,2, … , 𝑛 ) be a collection of HTEs, ℎ𝑖
− =

⋃ (𝑚𝑖𝑛{𝛾𝑖
𝐿},𝑚𝑖𝑛{𝛾𝑖

𝑀},𝑚𝑖𝑛{𝛾𝑖
𝑈}),𝛾𝑖∈ℎ𝑖

ℎ𝑖
+ = ⋃ (𝑚𝑎𝑥{𝛾𝑖

𝐿},𝑚𝑎𝑥{𝛾𝑖
𝑀},𝑚𝑎𝑥{𝛾𝑖

𝑈}), 𝑖, 𝑗 ∈𝛾𝑖∈ℎ𝑖

{1,2, … , 𝑛}, then 

⋃ (((1 − (1 − 𝛾−𝐿)𝑝+𝑞)𝟐)
1

𝑝+𝑞, ((1 − (1 − 𝛾−𝑀)𝑝+𝑞)𝟐)
1

𝑝+𝑞, ((1 − (1 −𝜸−∈ℎ𝒊
−

𝛾−𝑈)𝑝+𝑞)𝟐)
1

𝑝+𝑞) ≤ 1 − (1 − ∏ η
𝑖,𝑗

2

𝑛(𝑛+1)𝑛
𝑖,𝑗=1;𝑖≤𝑗 )

1

𝑝+𝑞

 ≤ ⋃ (((1 − (1 −𝜸+∈ℎ𝒊
+

𝛾+𝐿)𝑝+𝑞)2)
1

𝑝+𝑞, ((1 − (1 − 𝛾+𝑀)𝑝+𝑞)𝟐)
1

𝑝+𝑞, ((1 − (1 − 𝛾+𝑈)𝑝+𝑞)𝟐)
1

𝑝+𝑞) 

(29) 

This theorem is proved in the same way as theorem 6. 

Finally, the WHTFGGHM operator's properties are well-established. It is similar to the HTFGGHM 

operator's reasoning. We have therefore, decided to omit the comprehensive proof. 

4. CONCLUSIONS

The purpose of this work is to create a sophisticated and effective HTFGGHM operator to be used in 

MCDM contexts with vague and fuzzy data. The operator proposed here, as a combination of HTFS and 

GGHM, retains hesitancy and the correlation among criteria while fulfilling other important properties such 

as idempotence, monotonicity, and boundedness. The HTFGGHM operator enhances real-world decision-

making benefits and performs well where ambiguity and complexity exist, and other mathematical methods 

fail to work. Due to its ability to compile and sort alternatives, this tool is particularly useful for decision-

makers. Future studies can compare it with other fuzzy extensions, see how it performs when applied in 

dynamic decision-making problems, include other fuzzy extensions and run it on larger datasets. 

Comparisons with other advanced operators and applications in healthcare, supply chain, and 

environmentally friendly issues can place additional emphasis on scalability as well as applicability. 
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