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1. INTRODUCTION

This paper introduces a new aggregator, the Hesitant Triangular
Fuzzy Generalized Geometric Heronian Mean (HTFGGHM).
The hesitant triangular fuzzy set (HTFS) combined with the
Generalized Geometric Heronian mean (GGHM), makes the
HTFGGHM operator capable of ensuring reasonable
aggregation through desirable indexes such as idempotency,
monotonicity, and boundedness. As will be shown, it manages to
retain the inherent uncertainty and correlation of the criteria
while offering clear and coherent rankings. Incorporating the
carefulness of hesitant fuzzy sets and the compute-intensive
power of GGHM, the HTFGGHM operator improves the
decision accuracy and hence serves as a handy tool to tackle
vague situations in a multi-attribute decision-making process.

Multi-Criteria Decision Making (MCDM), in recent years, has been identified as an important area of
research since it can be applied in different fields such as economics, engineering, and management.
MCDM problems usually require rating many alternatives based on conflicting criteria, making the
decision-making process inherently multidimensional and complex (Liu & Shih, 2024). Those traditional
methods work well under some circumscribed circumstances but generally struggle with the uncertainties
and imprecision of real-world decision-making (Divsalar et al., 2023).
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Fuzzy logic has become an attractive and widely used tool to model and treat uncertainty in decision-
making problems (Ying & Xin, 2024). Hesitant fuzzy sets, or fuzzy sets where experts are uncertain about
their preferences and thus may have a range of potential values to describe each criterion have already been
used in several fuzzy models (Li & Xu, 2024). A very easy but efficient model for this kind of uncertainty
is the triangular fuzzy set, which is a special case of hesitant fuzzy sets (Fang, 2023). When paired with
more complex aggregation approaches like the Generalized Geometric Heronian mean (GGHM), these
models offer a rigorous, analytical framework for solving multi-faceted decision/policy-making problems.

Hesitant fuzzy sets (HFS), introduced by Torra (2010), have become increasingly popular because
they effectively capture the uncertainty in decision-making processes, especially when decision-makers are
unsure and may offer multiple possible values or judgments for each option. In recent years, researchers
have built on Torra’s foundational work, applying HFS to a wide range of decision-making scenarios,
particularly when preferences are unclear or conflicting. This has led to a deeper understanding of how to
handle uncertainty in complex decision-making situations.

Liao and Xu (2014) introduces a method for selecting suppliers in MCDM, where hesitant fuzzy sets
are used to represent uncertainty in the decision-makers' preferences. By applying an aggregation operator,
the method combines multiple fuzzy values for each supplier, improving the accuracy of the selection
process by better capturing the complex relationships between the criteria. Li and Xu (2024) emphasizes
on HFS and their development such as normal wiggly based hesitant fuzzy sets (NWHFS) and mixed-
normal-based hesitant fuzzy sets MNHFS to accommodate vagueness and include probabilistic data for
effective impulse-making in multi-attribute decision-making scenarios. Hasnan et al. (2024) introduces a
method that combines triangular fuzzy numbers with the MEREC approach to make decision-making in
complex scenarios more accurate and reliable. By addressing uncertainty and ambiguity, the method is
demonstrated through halal supplier selection, showcasing its ability to handle real-world challenges and
provide clear, informed decisions.

Amman et al. (2024) proposed the concept of Dual-hesitant Fermatean fuzzy set (DHFFS), which
applies Hamacher operations to make MCDM more effective through the management of both membership
functions as well as non-membership hesitancy levels to aggregate complexity and develop improved
solutions for MCDM in complex cases. Wang et al. (2024) fills the gaps of applying HFS in MCDM by
proposing NWHFS for modeling to reduce errors of decision and interactions between criteria and
alternatives. Xian et al. (2024) introduces a Z hesitant fuzzy linguistic term set (ZHFLTS) accompanied by
visualization metric for mapping to T-spherical fuzzy space to MCDM and overcome the problems of
ambiguity and randomness, particularly in traditional Chinese medicine (TCM).

In recent years, the use of Hesitant Triangular Fuzzy Numbers (HTFN) in MCDM has gained
significant attention. Gholizade et al. (2023) develops the Hesitant Triangular Fuzzy Sorting (HTFFS)
method for sorting hesitant fuzzy sets and triangular fuzzy numbers for ranking the alternatives for MCDM
with linguistic inputs under uncertainty. Pu et al. (2022) introduces a decision-making method using
Hesitant Triangular Fuzzy Power Aggregation (HTFPA) operators to handle uncertainty and attribute
correlations, demonstrated through a futures product selection example. Anitha and Vidhya (2023) presents
hesitant triangular fuzzy sets (HTFS) and propounds Dombi operation of hesitant triangular fuzzy Dombi
weighted averaging and geometric operators: scoring technique to augment multi-attribute decision-making
(MADM) process. Fany Helena (2024) proposes two new algorithms for MCDM based on Triangular
Hesitant Fuzzy Sets (THFS), introducing mid-value ranking and ambiguity ranking methods to calculate
expected values and determine criteria weights. The algorithms effectively handle uncertain and imprecise
conditions, demonstrated through a case study on health issues, and highlight the advantages of THFS in
addressing vague decision-making scenarios. Sultan et al. (2021) presents the hesitant fuzzy linear
regression model (HFLRM) applying the symmetric triangular fuzzy numbers (STFN) to handle hesitant
fuzzy data for MCDM and expounding more than the conventional fuzzy linear regression models.
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Researchers have introduced several aggregation operators specifically designed for HTFN sets to
effectively combine diverse opinions from different experts. For instance, Wang et al. (2014) examine the
aggregation of hesitant triangular fuzzy data using Bonferroni means, which help capture the
interrelationships between the combined values. Rodzi et al. (2021) introduced a hesitant fuzzy MCDM
approach that uses a z-score function along with hesitant degrees, deviation values, and weighted algorithms
to effectively rank alternatives, as demonstrated in supplier selection scenarios. In addition, Tang et al.
(2019) present dual hesitant Pythagorean fuzzy Heronian mean operators, which offer an alternative method
for integrating information in hesitant Pythagorean fuzzy settings, providing a unique approach to handling
uncertainty in decision-making. Nishad et al. (2023) presents a new aggregation operator for triangular
fuzzy numbers in the context of hesitant fuzzy time series forecasting to refine the forecast where
environment relations are comprehensive and imprecise. Wei et al. (2018) present the new g-rung orthopair
fuzzy generalized Heronian mean (q-ROFGHM) operator is defined based on the generalized geometric
Heronian mean (GHM) to verify its flexibility in upgrading MADM. Al-Quran (2021) presents a new
MCDM method using T-Spherical Hesitant Fuzzy Sets (T-SHFS) to handle uncertainty more effectively
by introducing aggregation operators like T-SHFWA and T-SHFWG, it demonstrates the usefulness in
ranking alternatives, illustrated through a mobile phone selection example.

Matejicka (2013) discusses the weighted generalized Heronian mean, which extends the Heronian
mean, and proves a double inequality containing two positive numbers to obtain optimal bounds for the
weighted geometric mean, Seiffert mean, and logarithmic mean. Zhang and Ji (2011) offers the generalized
Heronian mean when n-tuple positive real variables are available and establish the Schur-convexity, Schur-
geometric convexity, and Schur-harmonic convexity of the function in its efforts toward building the basis
to study related means in mathematical analysis.

The Generalized Geometric Heronian Mean (GGHM) is a new operator interpolating between the
arithmetic and the geometric means, extendable for applications in the MCDM problems since it considers
the interactions and weights of the criteria (Chu & Liu, 2015). However, the traditional GGHM, the data
assumed to be exact and not affected by either vagueness or hesitancy in evaluation which is not the case
in real-world decisions (Li & Li, 2023). To fill this gap, Hesitant Triangular Fuzzy sets (HTFS) have been
incorporated into the GGHM model. HTFS enables multiple membership values, which represent the
vagueness and uncertainty represented in decision makers’ preference systems. This improves the stability
of the aggregation process in MCDM and captures more effectively real-world dynamics and vagaries.

Thus, the merger of HTF and GGHM provides a powerful means of solving MCDM problems,
especially under conditions of high levels of uncertainty or when the data are conflicting. The HTF-GGHM
operator solves the problem of multiple criteria evaluations, and uncertainty in the operator’s decision-
making process. Incorporating multiple perspectives and uncertainty elements makes this approach increase
decision dependability. Integrating HTF can improve the evaluation by better management of different
degrees of membership, enhancing the decision models. This research introduces HTF-GGHM as a viable
solution in enhancing decision making accuracy under the conditions of uncertainty.

The aim of this study is to propose a new aggregation operator which is called Hesitant Triangular
Fuzzy Generalized Geometric Heronian Mean (HTF-GGHM) which combines hesitant triangular fuzzy
numbers with the concept of GGHM for MCDM. The HTF-GGHM operator is anticipated to incorporate
the inherent uncertainty and hesitancy in the judgments of the decision-makers about the assessments with
an effective way of aggregating the fuzzy information. This research will investigate the underlying
principles for HTF-GGHM.

This paper is organized into distinct sections to provide a clear and structured presentation. Section 1
introduces the research problem, emphasizing the challenges of uncertainty in Multi-Criteria Decision-
Making (MCDM) and the need for advanced aggregation methods. Section 2 outlines the fundamental
concepts, including fuzzy sets, hesitant fuzzy sets, and triangular fuzzy numbers, which serve as the
theoretical basis for the study. Section 3 proposes the Hesitant Triangular Fuzzy Generalized Geometric
https://doi.org/10.24191/mij.v6i2.4676
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Heronian Mean (HTFGGHM) operator, describing its development and properties such as idempotency,
monotonicity, and boundedness. Section 4 concludes the paper by summarizing its contributions and
suggesting future research directions for expanding its applicability in various decision-making contexts.

2. PRELIMINARIES

Definition 1. Fuzzy set: (Zadeh, 1965): A fuzzy set A in a finite universe of discourse X =
{x1, %5, ..., X} is defined as

A= {(x,uy(x))x € X} (1)

where py(x): X - [0,1] represents the membership function of (4) where p,(x) specifies the degree of
membership of an elementx € X within A. Building on this, the concept of HFS was introduced by Torra
(2010), allowing the membership degree of an element to encompass multiple possible values between 0
and 1. HFS effectively capture situations where individuals express varying degrees of uncertainty in their
preferences, enhancing decision-making by accommodating hesitancy.

2.1 Hesitant Fuzzy Set (HFS)

Definition 2. Hesitant Fuzzy set (Torra, 2010): Let X = {x, x,, ..., x,,} be areference set. A set E defined
in X is represented as

E = {{x, hg(x))x € X} 2

where hg (x) is a set of various values within [0,1], representing the potential membership degrees of the
element x € X in the set E. This is known as a hesitant fuzzy set. Additionally, Torra (2010) introduced
the concepts of the “empty hesitant fuzzy set” and the “full hesitant fuzzy set” as follows:

E = {(x, hEa(x))|x € X} where h o (x) = {0} Vx € X,
E* = {{x, hg«=(x))|x € X} where hg-(x) = {1} Vx € X

2.2 Triangular Fuzzy Numbers

Definition 3. Triangular Fuzzy Numbers (Van Laarhoven & Pedrycz, 1983): A triangular fuzzy
number @ can be defined by a triplet (ak, aM, a¥). The membership function ug (x) is defined as:

0, x<aq
x_aL
—, q; < x=<ay
ay — ag

ugG) = g, —x (3)
—, ay <x<aqay
ay — ay
k 0, x < ay
where 0 <alL < ap < ay, aj, and ay stand for the lower and upper values of the support of @, respectively,
and a)py is the middle value.
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Definition 4 (Van Laarhoven & Pedrycz, 1983): Basic operational laws relating to triangular fuzzy
numbers:

a @ b= [at,a™,aV] @ [bt,bM,bV] = [al + bL,a™ + bM,aV + bU] (4)
@ ® b= [at,aM a’] ® [bL bM,bV] = [aLbl,aMbM,aVbV] (5)
AQ® d=21Q [at,aM,aV] = [Aal, AaM, AaV],A > O ()

Definition 5 (Xu, 2009): Let b = [b%, b™, bU] and G=[a’, aM, aU] be two triangular fuzzy numbers, then
the degree of possibility of a> b is defined as

bM — qt
p(a = b) = Amax {1 _max[aM—aL+bM—bL'0]'0} 7

bU_aM
+ (1 — ))max {1_max[au—aM+bU—bM'0]'0}

where the value A is an index of rating attitude. It reflects the decision maker’s risk-bearing attitude. If A <
0.5, the decision maker is risk averter.

From definition 5, we can easily get the following results:

WM o<p@ =2h)<1,0<ph =2d) < 1; (8)
@p@ = b) +pb =a = 1. )
pl@ =a =p(b = b) = 05. (10)

2.3 Hesitant Triangular Fuzzy Set (HTFS)
Definition 6 (Zhao et al., 2014): Let X be a fixed set, a hesitant triangular fuzzy set (HTFS) on X is in
terms of a function that when applied to each x in X and returns a subset of values in [0,1].

E = {{x, hg(x))x € X} (11

where sz(x) is a set of some possible triangular fuzzy values in [0,1], denoting the possible membership
degrees of the element x € X to the set E. For convenience, we call EE(x) = h, = (yL,yM,yR) a hesitant
triangular fuzzy element (HTFE) and h the set of all HTFEs.

Given three HTFEs, h = (yL,yM,YR), hy = (v£, 71", v8), by = (v2,v2",¥%) and A > 0, we define
their operations as follows:

12
h* = Q{V’l}; ;33
M = yuh{l ~a-pi
hy @ h, = Y1Ehl;JZEhZ{V1 +¥2 — v1¥2} (14)
won= |J w

Y1€hy,¥2€h;
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Definition 7. Score Function (Xia & Xu, 2011): Consider a hesitant fuzzy element h, the score function

S of an HFE is defined as:
1
-5
() =3 2.7 (16)

YEh
where #h represents the total number of elements in h.

Definition 8. Let h, and h, be two hesitant fuzzy elements with scores S(h,) and S(h,), respectively.
Then:
(1) hyis larger than h,, denoted by h, > h, if S(hy) > S(h;)
(2) h, is considered equal to h, if S(hy) = S(h,).

2.4 Heronian Mean

The Heronian Mean (HM) is an aggregation method notable for its capability to capture relationships
among the inputs. The HM is defined as follows:

Definition 9. Heronian Mean (Beliakov et al., 2007): For a set of nonnegative real numbers a; where i =
1,2, ..., n, the Heronian mean is defined as:

n
2
HM(ay, ay, ..., a,) = ) Z \ aia;. (17)
ij=1

Definition 10. Geometric Heronian Mean (Yu, 2013): Geometric Heronian Mean (GHM) for a set of
nonnegative real numbers a;, where { = 1,2, ..., n, which is defined by:

2

n
a; + a;j\nn+1)
GHM(ay, ay, ..., a,) = 1_[ (Tf) ), (18)

i,j=1

Definition 11. Generalized Geometric Heronian Mean (Yu, 2013): For nonnegative real numbers a;
where i = 1,2, ..., n and parameters p, g = 0 (with p and g not both equal to 0), the Generalized Geometric
Heronian Mean is defined as:

n
1 1—[ _2
GGHMp‘q(alﬂ aZ’ ey an) = m (pai + qaj)n(n+1)' (19)
i,j=1

The properties of GGHMP? are as follows:

(i) GGHMP4(0,0,...,0) = 0 and GGHMPI(1,1,..,1) = 1;

(i) GGHMPi(a,,ay,..,a,) =a ifalla; = a;

@iii) If (a; < b)) V(i), then GGHMP(a,,a,,..,a,) < GGHMP9(by,b,,...,b,), indicating
GGHMP1 is monotonic;

(iv) miin{ a;} < GGHMP(aq, ay, ...,a,) < miax{ a;}

In the next section, the GGHM is extended to a hesitant fuzzy context with the following proposed
methods:

(1) The hesitant triangular fuzzy generalized geometric Heronian mean (HFGGHM).
https://doi.org/10.24191/mij.v6i2.4676
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(i) The weighted hesitant triangular fuzzy generalized geometric Heronian mean
(WHTFGGHM).

3. PROPOSED HESITANT TRIANGULAR FUZZY GENERALIZED GEOMETRIC
HERONIAN MEAN (HTFGGHM)

Definition 12. Hesitant Triangular Fuzzy Generalized Geometric Heronian Mean: Let p,q > 0 and
let h;= (I;, m;u;) be a collection of hesitant fuzzy triangular elements. The hesitant triangular fuzzy
generalized geometric Heronian mean HTFGGH MP-9 is defined as:

n

2
HTFGGHMP(h, sy ., h) = —— (X) (ke @ ahy) ® (ohy ® ah) )™, (20)
i,j=1;i<j

where @ and @ denote the operations applied according to the laws of hesitant fuzzy elements.

Theorem 1. Let p,q > 0 and let h;= (I;, m; u;) be a collection of hesitant triangular fuzzy elements. Then
the aggregated value obtained using the HTFGGH MP*? operator is also a hesitant triangular fuzzy element,
and

1 n 2
HTFGGHMPA(hy, hy, ..., hy) = —— ® (o ® qhy) @ (phy ® qhy))" ™,

p+q1] 1;i<j

which can also be expressed as:

n 2 p+q
1 _ _ nn+1)
=1 1 | | n;;
i,j=1isj

= 1—[1 Penie (A= A=+ (1= (1-1)) - -A-1)P) - (1-
(1-1)9)-(a-(-pM+a-a-w9-(-(1-y)")-a-a-
li)q))m]’”q’l - [1 iy (A= A =m)P) + (1= (1=m)) - (1 -
A-mp?)-(1=(1-m))-(1-(1-m)")+ 1 -A-m)D) - (1-(1-
m;)")-(1— (- mi)"))m]wJ — 1= iy (A= @ =P + (1= (1 = o
1)) - A= -u)?) - (1-(1-15)") ) (- -w))+a-a-u)h-

1

2
1o+
14 n(n
(1-(1-w)") a-a-un)™?
Here, 1; jrepresents the individual elements within the hesitant fuzzy sets involved in the aggregation.

ph; ® qh;=

https://doi.org/10.24191/mij.v6i2.4676
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By referring to equation (13), we’ll get
phy ={1 -1 -1, 1 -1 -mpP, 1 - (1 —u)}
q q q
ghy ={1-(1-5),1-(1-m)",1-(1-w)"}

phi={1-(1-4)"1-(1-m)"1-(1-w)"}
qhy ={1-(1-1%1-1-mp9,1 -1 -u}

Proof: Using equation (14), we get

Addition(®): ph; © qh;

A-a-H+0a-0-)Y-a-a-p»-1-0a-1)9,
=la-a-m))+(1-1-m))-a-a-m)»)-(1-(1-m)"),
A--u))+(1-(1-u))-a-a-uw?-(1-01-u)"

Addition(®): ph; ® qh;

A-1-)H+a-a-9-a-1-5)"H a-a-um,
=l a-0-m)H+a-a-m)H--(1-m)") A-A-m)?,
A-(1-w))+A--u)) - - (1-1)") A= -u)?)

By equation (15), we get
(ph: @ qhy) ® (phy ® qh;) =

[(a-a-w»+a-0-))-a-a-p»H-(1-(1-1)")
(a-a-pH+a-a-1n-a-0-1)")
1-Q1- li)")),((l —@-m)P) +(1-(1-m))
~-a-m)?) (1-(1-m))
(a-(-m))+a-a-m)n-1-1-m))
1-1-m)9), (@ - -u?)+(1-(1-w)")
—-A-u?) - (1-(1-u)")
(A-(1-uy)H+a-a-uwH-a-(1-w)"-
- (1 -u)n)|

https://doi.org/10.24191/mij.v6i2.4676
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From equation (12),

—2
((oh: @ qhy) ® (ph; @ qhy))" "0 =

[((1 —A-H+(-0-p)Y)-a-a-p»-1-01- lj)q))
(a-@-pH)+a-a-un-(1-0-1)")
A== (A= @ -m)P) +(1- (1-m))
-(--mn)-(1-(1-m)")
(A-@-m))+a-a-m)H-@1-1-m))

2
(1= =mD) (A - A —wdn) + (1= (1= w)")
—-A-uw)) (1-(1-u)")
(A-(-w)H+a-0-wH-0a-01-w))a
-(1- ui)q))m]

By referring to equation (15),

2z
I1})-1:2;(ph: © qhy) ® (phy © qh;)"+D =

P (A= Q=P+ (1= (1)) - - =" -(1-(1-1))-
(A-(@-p)H+a-a-19-(1-(1-1)")-a-a-
D) T ey (A= A =m?) + (1= (1=m)") = (1 = A =m)?) - (1 -
(1=m)")- (= @ =m)") + @ =a=m)D = (1= (1=m)") (1=~
M) ) T e (= (=) + (1= (1 =) = (1 = A —u)?) - (1 -
(1-u)D)-(A-(1-y)H+A-0-uH-1-(1-1)") QA-U-
ui)q))m

By referring equation (13), we’ll get

! 2
T ((phi D th) X (ph]. D qhi))n(n+1)
P Lj=1isj

1
no 2 \PH
=1- <1 — 1_[ nz}(.nﬂ))
i,j=1;i<j

https://doi.org/10.24191/mij.v6i2.4676
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=1—[1— Mg (M- A=+ (1= (1-1)") - -a-1p»-(1-(1-1))-

(A-(-p))+a-a-19-1-(1-)")-a-a- zi)q))’“"—”]w,l - [1 -
Benier (A=A =mp?) + (1= (1-m)) - - -m)")-(1-(1-m)")) (-

(=m)) + A= =m)D - (= (1 =m)") - =@ -mpn)y= " 1= |1
L=t ((1 —A-u))+(1-(1-u))-a-a-u?)-(1-(1- uj)q)) (-
1-u)H)+A-0-uw))-(1-1-u))-a-0a- ui)q))m]w
Equation (21) has been proven. [

Proposition 2. Let hy, and hg be two collections of HTEs, n; ji<j = (Phe, @ qhaj) ® (phaj ® qhs,)
andn; j;i<; = (phg, @ qhﬁj) ® (phﬁj @ qhg). If forany y,, € he andyg, € hg, (i,j = 1,2, ..., n;i # j),
we have y,, < yp, and Ya; < Vg then Nayjic; < NByjicj

Proposition 3. Let h; (i = 1,2, ...,n) be a collection of HTFEs, n;j ;<; = (ph @ qh; ) ® (ph ® qh; ) and

hi = Uy,en,(min{y{3, min{y} } min{y{'}, hf = Uy,en,(max{y}, max{y"}, max{y}),i,j €
{1,2, ...,n}; then

U @—a—yoraza—-a-y oz a-a -yt
Y~ €h;
< [J @-a-ymrara-a-ymprona (22)
y+ehf

— (-2

Theorem 4. Idempotency property: A = (I;, m;u;)(i = 1,2, ...,n) represent a set of HTFEs. If 4; =
(l;, myw;) for all i, then HTF — GGHMP9 (A, Ay, ..., A,) = a.

Proven since A; = (I;, m;u;)(i = 1,2, ...,n) , then,

GGHMp'q(al, as, .. an) = m H(pal + qa; )n(n+1) (23)

2
nn+1)

n
=1
=— (pa + qa)
p+q e

nn+1)

=— 1_[ (a(pa + qvt))n(nz+

https://doi.org/10.24191/mij.v6i2.4676
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P‘HI
=a

2
n(n+1)]n(n+1)

[( (+q))

Theorem 5. Monotonicity property: Let h,, and hg, (i = 1,2, ...,n) be two collections of HTFEs; if , for
any Yo, < hg, andyp, < hg,(i,j = 1,2, ..,m; i # j), one has y,, < yp, and y,; < vp,. Then,

HTF — GGHMP(hg,, hey .., he,) < HTF — GGHMP9(hg,, hg,, ..., hg,)

Proof: By proposition 2, we get Nay < g0 i,j €{1,2,..,n}Li#j

Then
1 1
n 2 p+q n 2 p+q
_ _ n(n+1) _ _ n(n+1) (24)
=11 1_[ Nayj =1-1 1_[ L2y
i,j=1;i<j L,j=1;i<j
By definition 7, we acquire:
HTF — GGHMP(hy , hy,, ..., hy,)
n 2
1 n(n+1)
Tptq, ..(n“”')
1,j=1;i<j
1
n 2 p+q
_ _ _ n(n+1)
B U I={t 1_[ Nayj
i j€0is] k i,j=1iisj }
1
n 2 p+q
D (25)
< _ _ n(n+1)
= =t 1_[ iy
i j€TIs] k ij=1ii<j }
e O ()
n(n+1)
NBy;
Ptq i,j=1;i<j
= HTF — GGHMp’q(hﬁl,hﬁz, ’hﬁn)
Theorem 6. Boundedness: Let h;(i=1,2,.. ) be a collection of HTEs, h; =

Uy,en,(min{y/}, min{y}}, min{y’}), ki = Uy en, (max{%} max{y}"}, max{y}),i,j € {1,2,...,n};
then
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L (@ - a -y @i, (@ - @ - yypeapi,

Y €Eh;

L

1
-(1- y—U)W)Z)W) < HTFGGHMPA(hy, hy, ..., hy)

< |J (c@-a-ymypopma 26)

vtenf

— (1 - y+M)p+q)Z)ﬁ, ((1 _ (1 _ y+U)p+q)Z)ﬁ>

Proof: By Proposition 3, we have

U (Q-A-y ™LA -A-y™P" DL A - A -y DP"D?) < nyjug
Y~ €h;
< U (A= @ —y™Pr D% (1 - @ —y™)PH )2 (1

ytenf

— (- yyrr?)

So

| (@ - a -y @i, (@ - @ - yypani,

Y €Eh;

1

1 n 2 p+q
-U 2\p+ag nn+1)
~a-y ) <1-(1- [ o
i,j=1;i<j
L 1 27)
< | (c@-a-ymrpm - a - yorane,

y+€hf
1
- (1 =y
By definition 7, we complete the proof.

Theorem 7. Suppose p,q > 0 and let h;= (I;, m; u;) represent a set of hesitant triangular fuzzy elements,
accompanied by a weight vector w = (wy, Wy, ..., w,)T wherew; > 0,i = 1,2, ...,nand I, w; = 1. Then
the aggregated value derived using the WHTFGGHMP? operator is also a hesitant triangular fuzzy
element, and

2wiw;j

n
1 ulid i}
WHTFGGHMP(hy, hy, ..., hy)s = —— ® ((Phi ® qh;) ® (ph; @ qhz))(1+wi),

ij=1i<j
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which can also be expressed as:

n ZWin p+q
_ U 1-(1- 1_[ 7, ;T

i, j€0L,j;is] k

=1- [1 e (A= Q=)+ (1- (- -a-a-1)»)-(1-
(1-1)9)- (-0 -p))+a-a-9-(1-1-p))-a-a-

1
ZW,:W]'

li)q))@”vi)] 11— I1 ol | LS ((1 —A-m)M+(1-(1-m))-@a-
@-m?)- (1= (1-m)))-((1-1-m)" )+ @ -A-m)D) - (1-(1-

i (28)
mj)p) 1-(01- mi)q))(1+Wi)] 11— [1 N | iy ((1 —(1—-u)P) + (1 _ (1 _
) - A= -u)?) - (1-(1-u)))- (A= (1-w)")+ A= 1 -u)?) -

1
ZWtw/]m

1- (1 - uj)p) 1-Q@1- ui)Q))(Hwi)

Here, 1; jrepresents the individual elements within the hesitant fuzzy sets involved in the aggregation.

ph; @ qh;j=
By referring to equation (13), we get

ph={1— (1= 1P, 1= (1 —m)?, 1= (1 - u))?}
ghy={1-(1-1)"1-(1-m)" 1-(1-w)"
phy={1-(1-1)"1-(1-m)", 1 - (1-w)"}
ghy={1-(1—-1)%,1- (1 -m),1-(1-u)7)
Proof: Using equation (14), we get
Addition(®): ph; ® qh;
A-A-H+0-1-p))-a-a-p»-1-0-15)9,
=l a-a-m+(1-1-m))-a-a-m)»)-(1-(1-m)?),
A--u))+(1-1-u))-a-a-uw? -(1-01-u)"
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Addition(®): ph; © qh;

A-1-p)H+A-a-H-a-1-4)") a-a-u9,
=la-0-m)H+a-a-m)H-A-(1-m)") - 1-QA-m9,
A-(1-y))+a-0-uw))-A-(1-w)) A= C-u))

By equation (15), we’ll get
(ph: @ qhy) ® (phy ® qh;) =
(a-a-wm+-0a-pT)-a-a-u»)-(1-1-1)9)

(a-@-pNH+a-a-n-a-a-4))
(1= -1)9), (A= -mP) +(1-(1-m)")
—-a-m)» - (1-(1-m)")
(a-(-m))+a-a-myn-1-1-m))
A--m)9),(A-A-uP)+ (-1 -)")
—(-a-u))-(1-(1-y)")
(- -w)H+A-0-w))-01-(1-u)")-a
~ @ -u)m)|

From equation (12),

2wiwj

((phi ® qh;) ® (ph; @ C[hi))m =
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(A-a-»+0-0-p)HY-a-a-»-1-(1-1)")

(a-0-p)+a-a-9-0-0-y))

=@ =0)T (A= -m)) + (1= (1-m)7)
~-a-m)?) (1-(1-m)M)
(a-(-m))+a-a-m)n-1-1-m))

2wiwj
1-Q1- mi)q))“””f) ) ((1 —1-uM)+(1-(1-w)?)
—a-A-u)-(1-(1-u)")
(A-(1-w)H+a-0-wH-a-(1-w)")-a

ZWin

— (1 —u)9))0+wd

By referring to equation (15),

n 2Win
l_[ (ph: ® qh;) @ (ph; @ qh;)T+W) =

ij=1ii<j
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n

1—[ (A-a-»+0a--p)H-a-a-p»-1-(1-1)")

ij=1ji<j

(a-@-p))+a-a-u9-(1-0-1)")

a-a-po)™ [ ] (a-a-mon+ - -m))
i,j=1isj

~-a-m)?) (1-(1-m))
(--m))+a-a-m)n-(1-(1-m))

ZWin n
(1= (1 =m) D), n (A-a-w»+1-01-w)9
ij=1ii<j

~a--w?)-(1-(1-w)")
(a-A-y)H+a-0-wH-a-(1-w))-a

ZWin

— (1 —u)9))a+wd

By referring to equation (13), we’ll get
1 n
pt+q.

i,j=1;i<j

2WiWi\ p+q
_ n (1+w))
=1- (1 ~ i j=1isj My

Zwiw

((phi ® qh) @ (ph; ® qhi))m
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=1—[1— l_[ (A-a-»+a-1-1))-a-a-»

ij=1ii<j

(1= (1-1)")
(a-a-p))+a-a-u9-(1-0-1)")

2wiw;j p+q
(A=A =1)0)T g

] Il
- [] (@-a=-mom+@a-@-m))-a-a-mm

ij=1;i<j

(1= (1-m)")
(--m))+a-a-m)0-(1-(1-m))

1

2wiw; p+q
A=A =m)D)TI 1

_Il

- [ (a-a-wm+a-0-w))-a-a-uwn

ij=1;i<j
(1-(1-w)")
(A--y)H+a-0-uwH-a-(1-u))-a

1
2Win pt+q

— (1 —u)9))a+wd

Equation (28) has been proven.

Theorem 8. Idempotency property: A = (I, m;u;)(i = 1,2,...,n) represent a set of HTFEs. If 4; =
(1, myu;) for all i, then HTF — GGHMP(A, A, ..., A,) = a.

This theorem is proved in the same way as theorem 4.
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Theorem 9. Monotonicity property: Let h,, and hg, (i = 1,2, ...,n) be two collections of HTFEs; if , for
any Yo, < hg, and Vg, < hﬁj (i,j=12,..,mi # j), one has y,, < yp, and Ya; < V) then
HTF — GGHMP(hg,, hq,, ..., he,) < HTF — GGHMP(hg , hg,, ..., hg, ).

This theorem is proved in the same way as theorem 5.

Theorem 10. Boundedness: Let h;(i=12,..,n ) be a collection of HTEs, h; =
inehi(min{]/il‘}' mln{)/l,]w}' min{]/iu})' hl+ = inehi(max{yill}! max{Yin}! max{YiU})l ll] €
{1,2, ...,n}, then
1 1
Uy-en; <((1 — (1 =y HPr)2)pra, (1 — (1 —y~M)PHa)2)p+a, (1 — (1 —

) 1
— amen \P
V_U)p+q)2)p+q) <1- (1 - 2j=1;isjni,§- +1)) < Uy+eh§" (((1 -(1- (29)
1 1 1
yrOPFORer, (1 - A —y*)PH)2)era, (1 - (1 - V“’)”*q)z)m)
This theorem is proved in the same way as theorem 6.

Finally, the WHTFGGHM operator's properties are well-established. It is similar to the HTFGGHM
operator's reasoning. We have therefore, decided to omit the comprehensive proof.

4. CONCLUSIONS

The purpose of this work is to create a sophisticated and effective HTFGGHM operator to be used in
MCDM contexts with vague and fuzzy data. The operator proposed here, as a combination of HTFS and
GGHM, retains hesitancy and the correlation among criteria while fulfilling other important properties such
as idempotence, monotonicity, and boundedness. The HTFGGHM operator enhances real-world decision-
making benefits and performs well where ambiguity and complexity exist, and other mathematical methods
fail to work. Due to its ability to compile and sort alternatives, this tool is particularly useful for decision-
makers. Future studies can compare it with other fuzzy extensions, see how it performs when applied in
dynamic decision-making problems, include other fuzzy extensions and run it on larger datasets.
Comparisons with other advanced operators and applications in healthcare, supply chain, and
environmentally friendly issues can place additional emphasis on scalability as well as applicability.
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