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Abstract—Accurate prognostics of battery State-of-Health (SOH)
and Remaining Useful Life (RUL) are paramount for the
operational safety and economic feasibility of sustainable energy
systems, yet are frequently hindered by noise-corrupted sensor
data. This study introduces and validates a novel hybrid
framework that integrates Empirical Mode Decomposition (EMD)
as an adaptive signal pre-processing technique with advanced
machine learning models to overcome this critical limitation.
Utilizing the NASA Ames prognostic dataset with synthetically
introduced Gaussian noise to simulate real-world conditions, we
demonstrate that EMD-based filtering effectively denoises battery
discharge profiles, revealing a more coherent degradation
trajectory. A comparative analysis of the resulting hybrid models
SVM_EMD, LSTM_EMD, and GRU_EMD conclusively shows
that the SVM_EMD model delivers superior performance,
consistently achieving the lowest Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE), and
providing the most accurate RUL predictions across all tested
battery units. This research establishes the two-stage SVM_EMD
framework as a robust, low-complexity, and highly effective
solution for enhancing the reliability and longevity of batteries in
real-world applications, underscoring the vital importance of
dedicated signal pre-processing in battery prognostics.

Keywords— Batteries, State-of-Health, Energy storage, RMSE,
EMD.

I. INTRODUCTION

The global transition towards sustainable energy and
transportation systems, a cornerstone of international
frameworks like the United Nations' Sustainable Development
Goals (SDGs), is fundamentally reliant on advanced energy
storage technologies. Electric vehicles (EVs) and battery energy
storage systems (BESS) are at the forefront of this paradigm
shift, enabling decarbonization and enhancing grid stability.
However, the operational viability and economic feasibility of
these technologies hinge on the longevity and reliability of their
core component: the battery. As batteries degrade through use,
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their capacity to store and deliver energy diminishes, posing
significant challenges to performance, safety, and system
reliability [1, 2, 3]. Consequently, the ability to accurately
predict battery health and RUL is paramount, aligning with
circular economy principles by maximizing asset lifespan,
minimizing electronic waste, and ensuring the sustainable
deployment of clean energy solutions [4].

The health of a battery, quantified by metrics such as SOH,
reflects its current condition relative to its original
specifications, particularly its capacity and internal resistance
[5]. Precise SOH estimation and RUL prediction the forecast of
when a battery will no longer meet performance thresholds are
critical for implementing proactive maintenance strategies,
preventing catastrophic failures, and optimizing operational
efficiency [6, 7]. Battery degradation is a complex,
multifactorial process influenced by a confluence of operational
and environmental stressors. These include charge/discharge
protocols, depth of discharge (DoD), and operating
temperatures, which can accelerate electrochemical decay and
structural fatigue within the cell [8, 9, 10, 11]. The inherent
nonlinearity of this degradation process, further complicated by
fluctuating external conditions [12], renders accurate life
prediction a formidable scientific and engineering challenge.

Historically, approaches to RUL prediction have relied on
either empirical models or first-principle electrochemical
models. Empirical methods, which employ curve-fitting on
historical operational data, often lack the precision required for
dynamic, real-world applications due to their inability to adapt
to varying usage patterns [13, 14]. Conversely, electrochemical
models, while providing high-fidelity simulations of internal
cell dynamics, are computationally intensive and require
extensive, often proprietary, knowledge of the battery's specific
chemistry, limiting their practical implementation [15]. These
limitations underscore the need for more sophisticated, data-
driven techniques that can capture the complex temporal
dependencies and stochastic nature of battery degradation.

To address these challenges, this study recognizes battery
degradation as a complex time-series problem where the
underlying health signals are frequently obscured by
measurement noise and operational disturbances. The use of
hybrid models, which combine signal processing techniques
with machine learning algorithms, has gained traction. For
instance, EMD has been successfully used to denoise sensor
signals for fault diagnosis in rotating machinery [16]. More
recently, the fusion of EMD with deep learning models like
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LSTM has been explored for RUL prediction of bearings and
other mechanical components [17]. However, a comprehensive
analysis of EMD as a dedicated pre-processing step for various
machine learning models (SVM, LSTM, and GRU) for battery
SOH prediction, especially under noisy conditions, remains an
area requiring deeper investigation. This research proposes a
hybrid methodology to enhance the accuracy of RUL prediction
by filling this gap. The primary objectives are twofold: (1) to
develop a robust signal pre-processing technique using EMD to
effectively denoise SOH data, and (2) to integrate this EMD
based filtering with advanced machine learning models
specifically Long Short-Term Memory (LSTM), Support
Vector Machines (SVM), and Gated Recurrent Units (GRU) to
build a more accurate and reliable prediction framework. By
improving prognostic accuracy, this work aims to enhance the
safety, reliability, and economic value of batteries in critical
applications such as EVs and BESS.

The remainder of this paper is structured as follows. Section
2 provides a comprehensive review of existing literature on
SOH and RUL estimation techniques and their associated
challenges. Section 3 details the proposed methodology,
elaborating on the EMD filtering process and its integration
with the selected machine learning models. Section 4 presents
the experimental setup and a comparative analysis of the
results, validating the performance of the proposed approach
against established benchmarks. Finally, Section 5 concludes
the paper, summarizing the key findings, acknowledging the
study's limitations, and proposing directions for future research.

II. BATTERY DATASETS

The datasets used in this study were provided by the NASA
Ames Research Center and comprise cyclic aging data for three
lithium nickel cobalt aluminium oxide cells, designated as
B005, B006, B0O07 [18]. These 18650-form factor lithium-ion
cells were manufactured by Idaho National Laboratory and
featured a rated capacity of 2.0 Ah and a nominal voltage of 3.7
V. The aging protocol involved controlled charging and
discharging cycles. Charging was performed until the cell
voltage reached 4.2 V, followed by constant voltage (CV)
charging at 4.2 V until the current tapered below 20 mA.
Discharging was conducted with end-of-discharge voltages set
at 2.7 V (B005), 2.5 V (B006), and 2.2 V (B007). These
variations in cutoff voltages were intended to induce different
aging patterns among the cells.

The cycling was continued until each cell’s capacity
degraded to 70% of its nominal value. Throughout the testing,
operational conditions such as temperature were controlled to
minimize environmental influences. The datasets include
detailed records of voltage, current, capacity, and temperature
measurements across cycles, providing high-fidelity data
suitable for modelling battery degradation and predicting RUL.
Due to their comprehensive structure and experimental rigor,
these datasets have been widely adopted in the literature for
developing and validating prognostic health management
(PHM) models, battery SOH estimation techniques, and
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advanced battery management strategies.

III. METHOGOLOGY

Fig. 1 illustrates a process for predicting the SoH of a battery
using historical data from NASA (B05, B06, and B07) and
EMD noise filtering. The process begins with loading historical
battery data, followed by extracting relevant features from this
dataset. To simulate real-world uncertainties, Gaussian noise is
introduced into the extracted data. Subsequently, a Kalman
filtering technique is applied to remove noise and enhance data
quality before training the prediction model.

)

Save Training Model

Load Historical Battery Data ¢
B0005, BOOO6 and BO0OO7

|

Extract Data From the
Historical Data

}

Introduce Gaussian Noise to
the Data

}

Filter Noise From the Data

Testing Remaining 63 Cycles
and Predict SoH of Battery
using LSTM, SVM and GRU

using EMD Tabulate and PLot
Regression, RMSE, MAPE,
l RUL and ANOVA each
battery

Train First 100 Cycle Data
From the Filtered Data

I

Fig. 1. Flowchart of Battery Prediction

Once the filtered data is prepared, it is used to train a model
that predicts the SoH of the battery. A decision node checks
whether the SoH of specific battery units (B05, B06, and B07)
has been successfully predicted. If the prediction is incomplete,
the process iterates; otherwise, it terminates. This structured
approach ensures that the predictive model is trained on
denoised and reliable data, improving the accuracy of battery
health estimation.

A. Research Framework

To simulate real-world measurement uncertainties in
battery data, Gaussian noise is introduced to the discharge cycle
data. The function to introduce noise into first life of the battery
which is first 100 cycle. Noise will be introduced to the
measured current and voltage of each discharge cycle by adding
a random noise component sampled from a Gaussian
distribution with a 0.05 noise level. This process ensures that
the dataset accounts for variability typically encountered in
practical battery monitoring systems. The Gaussian Noise is
computed using equation (1)
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Where;

e xrepresents the noisy signal,
e X is the original signal,

e u mean of the noise,

e 2 variance of the noise.

In real-life battery systems, Gaussian noise represents
measurement inaccuracies due to sensor imperfections,
temperature fluctuations, and electronic interference. For
instance, current and voltage sensors may exhibit drift or
random fluctuations due to environmental factors, leading to
minor deviations in recorded values. By incorporating Gaussian
noise, the robustness of subsequent signal processing and state
estimation techniques can be evaluated under realistic operating
condition

B. Compute New Capacity

Battery capacity degradation is a key indicator of SoH.
However, due to noise and measurement inconsistencies, raw
capacity estimates may not accurately reflect the true battery
degradation trend. Original battery capacity affected when
noise introduced to the original data. By computing capacity
from the filtered discharge data, a more reliable SoH estimate
is obtained, reducing the impact of sensor errors and
fluctuations in the dataset. The new capacity is computed using
equation (2)

C=—[I(t)dt ()

where I(t) represents the discharge current as a function of

time. In the implementation, the Trapezoidal Rule is used for
numerical integration.

C. Empirical Mode Decomposition Filter

To mitigate the effects of noise introduced in the previous
step, EMD is applied to the discharge cycle data. EMD is a data-
driven, adaptive signal decomposition technique that iteratively
separates a signal into intrinsic mode functions (IMFs) and a
residual trend. Each voltage and current signal from the
discharge cycles is decomposed using EMD into a finite set of
IMFs representing oscillatory modes at distinct frequency
scales. High-frequency IMFs, typically corresponding to noise,
are identified and excluded from the reconstruction. The
denoised signal is then obtained by summing the remaining
IMFs and the residual component. This filtering operation is
expressed in equation (3)

N
x(®) =) a®) + @ )
j=1

where ci(t) are IMFs and rN(t) is the residual. EMD is
beneficial for removing noise from battery degradation signals,
making it easier for LSTM to learn long-term dependencies.

Fig. 2. illustrates the EMD process. The EMD algorithm
decomposes a nonlinear and non-stationary signal into a finite

set of Intrinsic Mode Functions (IMFs). It iteratively extracts
oscillatory components by identifying local extrema, forming
upper and lower envelopes via spline interpolation, and
computing their mean. This mean is subtracted from the signal
in a sifting process, repeated until an IMF is obtained. The
residue is then used for further decomposition. This diagram
summarizes each step involved in isolating IMFs with high
noise from the original signal to compose become filtered
signal.

Noisy Signal
W Decomposeed
JWWWWM IMF 1 -/'
\L -WMMMNWW IMF 2
J\[WWVWWWV\ - AVWVAVAMA IMF 3 — /\/\/\/
Signal MWW IMF N Reconstructed
IanIt & Residual

Fig. 2. EMD Filtering flow

EMD filtering is selected over conventional linear filtering
approaches and even multiresolution techniques such as EMD
filtering due to its fully adaptive and data-driven nature. Unlike
wavelet methods that require predefined basis functions, EMD
directly extracts signal components based on the local extrema,
making it particularly effective for processing non-linear and
non-stationary signals such as battery discharge voltage and
current profiles. This adaptability enables precise denoising
while retaining critical transient features relevant to capacity
estimation and battery health diagnostic.

IV. SoOH PREDICTION TECHNIQUES

In this study, 100 initial discharge cycles were used for
training, and the remaining 63 cycles served as the prediction
dataset. The input features for prediction were the mean
discharge voltage and mean discharge current extracted from
each cycle. All input features and the target (State of Health,
SoH) were normalized using z-score normalization based on the
training set statistics and applied consistently to the test set.
Model performance was validated using a temporal holdout
method, where prediction was performed on remaining 63
cycles.

Z - score normalization equation;
xX—u
z=— )
Where;
e Zisthe Z - score,
e  xis the predicted value,
e  uis the mean of the dataset
e o is the standard deviation of dataset.

Furthermore, the performance of various machine learning
models for battery parameter prediction (such as capacity
degradation or remaining useful life (RUL)) was evaluated
using statistical metrics such as Root Mean Square Error
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(RMSE), Mean Absolute Percentage Error (MAPE), and
Regression Equation analysis. These evaluation techniques
serve as critical tools for quantitatively assessing the accuracy
and reliability of the predictive models used.

» RMSE
1
RMSE = /; O — 92 5)
Where;

e y;is the actual value,
e  9;is the predicted value,
e nis the number of data points.

RMSE is sensitive to large errors, as it squares the residuals
before averaging. This makes it a suitable metric to penalize
large deviations from the true battery health values. In the
context of battery degradation prediction, a lower RMSE
implies that the model is making predictions closer to the actual
performance, especially in critical degradation stages. RMSE is
particularly useful when large prediction errors are undesirable,
as in EVs applications where battery health is safety critical.

» MAPE

MAPE = 2% 51 |12 (6)

1 Vi
Where;
e  y;is the actual value,
e  P;is the predicted value,
e nis the number of data points.

MAPE provides the average error as a percentage, making
it easy to interpret. It is particularly useful in battery prediction
scenarios because it allows comparison across datasets with
different scales or capacities. A lower MAPE value indicates
better model accuracy in predicting the battery behaviour over
time. However, MAPE can be unstable when actual values are
near zero, which must be considered during implementation.

» Regression Equation

Vi=fXiuP)+e (7
Where;

e Yis the dependent variable,
e fis the function,
e X; is the independent variable,
e [ is the y-intercept.
e  ¢;is the error term or residual

The regression line ideally should have a slope a=~1 and
intercept b=0. These indicate that the model accurately captures
the trend of the battery’s actual performance. In battery health
prediction, a high regression value supports the model’s ability
to generalize across unseen data, while poor regression
alignment can indicate bias or underfitting.
Data charts which are typically black and white, but sometimes
include color.

A. SoH Estimation Using Support Vector Machine (SVM)

SVM is a supervised learning algorithm widely used for
classification and regression tasks. In the context of battery
health prognosis, SVM regression is particularly effective for
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modelling nonlinear degradation patterns by projecting input
features into a higher-dimensional feature space using a kernel
function. This allows the model to capture complex
relationships between extracted features (such as voltage time
intervals) and the SoH of a battery.

After obtaining the denoised discharge cycle data, features
such as the Time Interval for End-of-Discharge Voltage Drop
(TIEDVD) and Time Interval for End-of-Charge Voltage Drop
(TIECVD) are extracted.

TIEDVD =tz ¢y — tzgy ®)
TIECVD = ty,y — tz sy ©)
Where:
e t3yis the time when discharge voltage first reaches
3.6V,
® t;gyis the time when discharge voltage first reaches
3.8V,
e t,,yis the time when charge voltage first reaches
4.2V,
e t35y is the time when charge voltage first reaches
3.5V.

These features, along with the filtered capacity data, serve
as input predictors for training an SVM regression model. The
model is trained using 100 cycles of first-life battery data, and
tested on the remaining 63 cycles, simulating a realistic future
prediction scenario. The regression function learned by SVM is
represented by:

f)=w"p(x)+b

Where;
e xis the input feature vector,
e  ¢(x) is a transformation function,
e o is the weight vector,
e b is the bias term.

In this study, the Gaussian Radial Basis Function (RBF)
kernel was used, which is well-suited for nonlinear regression
tasks such as SoH prediction. The Gaussian kernel enables the
SVM model to learn complex, non-linear relationships between
the features and the target output.

The Gaussian RBF kernel is defined as:

2
—||xi % ||
K(xi,x]-) = exp (—202
Where;
e x; x; are feature vectors from two different cycles,

(10)

(11)

2 . . .

. ||xi —xj|| is the squared Euclidean distance
between them,

e o (or KernelScale) controls the kernel’s spread.
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Fig. 3. Structure of the SVM Network

Fig. 3. shows the architecture of the SVM used for
regression-based SoH estimation. The SVM model receives a
feature vector comprising filtered capacity values and voltage
time intervals. These features are mapped into a higher-
dimensional space through a kernel function, enabling the
model to capture nonlinear degradation trends in battery
performance. The output is a scalar value representing the
predicted SoH. The training process involves tuning
hyperparameters such as the kernel scale, box constraint, and
epsilon to optimize model generalization. This structure
provides a balance between complexity and accuracy, allowing
the model to learn degradation behaviours even with limited
training data.

B. SoH Estimation Using Long Short-Term Memory (LSTM)

In battery prediction, LSTMs are widely used for
forecasting the RUL and SOH based on historical sensor data,
such as voltage, current, and temperature. The model processes
past battery performance data in a sequential manner, capturing
long-term dependencies to predict future degradation trends.
During training, the LSTM learns complex temporal
relationships by minimizing a loss function, typically Mean
Squared Error (MSE), using backpropagation through time
(BPTT). Once trained, the model can accurately estimate
battery aging and failure points, helping optimize energy
management systems and predictive maintenance strategies.
Variants like bidirectional LSTMs and attention mechanisms

further enhance predictive accuracy by considering

dependencies in both past and future time steps.
fe = o(Ws - [he_yx.] + by) (12.1)
ip = o(W; - [he_yxe] + by) (12.2)
€t = tanh(W, - [hy_yx,] + b.) (12.3)
Co=ft Catig-C (12.4)
0y = o(Wp - [he_yrxc] + by) (12.5)
h’f = 0t * tanh(Ct) (126)

Where;
e f; i, 0.are forget, input, and output gates.
e (s the cell state.
e  h, is the hidden state.
o Wy, W, W, W,and by, b;, b, b, are weights and
biases.

Output Gate:

Ct1 g i
ha & N .- :

Fig. 4. Structure of the LSTM Network

Fig. 4. presents the LSTM network used for sequential
modelling of battery data. The LSTM processes time-series
inputs voltage, current, and temperature capturing both short-
term fluctuations and long-term degradation patterns. The
internal architecture consists of input, forget, and output gates
that regulate the information flow, and a memory cell that
retains relevant features across cycles. During training, the
network minimizes prediction error using BPTT. This memory-
enhanced structure is particularly effective for applications
where battery degradation evolves gradually over long
operational periods.

C.SoH Estimation Using Gated Recurrent Units (GRU)

In battery prediction tasks, GRUs are commonly employed
to forecast the RUL and SOH based on historical sensor data,
including voltage, current, and temperature. GRUs process
battery performance data in a sequential manner, capturing
temporal dependencies without the need for a separate cell
state, as used in LSTMs. Instead, GRUs rely on an update gate
and reset gate to regulate the flow of information. During
training, the GRU model learns complex temporal patterns by
minimizing a loss function typically Mean Squared Error
(MSE) through BPTT. Once trained, it can effectively estimate
battery aging and predict failure events, contributing to
optimized energy management systems and predictive
maintenance. Enhancements such as bidirectional GRUs and
attention mechanisms further improve performance by allowing
the model to consider both past and future dependencies.

The GRU operates according to the following equations:

ze = o(Wy * [he_yxe] + by) (13.1)
1 = oW * [he_yxe] + by) (13.2)
it = tanh(Wy, * [ry * he_yx;]

+by) (13.3)
ht = (1 - Zt) * ht—l + Zf * h:t (134)

Where;
e 7z, 1are the update and reset gates.
e  is the cell state.
e h, is the hidden state.
o W, W,,Wyand b,, b, b, are the model weights and
biases.
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Fig. 5. Structure of the GRU Network

Fig. 5. illustrates the architecture of the GRU model, an
alternative to LSTM with reduced complexity. Unlike LSTM,
GRU does not maintain a separate memory cell; instead, it
utilizes update and reset gates to manage the internal hidden
state. This architecture enables the model to learn temporal
dependencies with fewer parameters and computational cost.
GRUs are particularly  well-suited  for  real-time
implementations where efficiency is critical, yet the model still
needs to track degradation over time with reasonable precision.

V.RESULTS AND DISCUSSION

Fig. 6(a) shows the original discharge cycle of battery BO005
from the NASA dataset, representing the baseline voltage
response during a standard discharge event. The curve captures
the characteristic voltage drop over time as the battery depletes
its stored energy. This signal serves as the unaltered reference
for analysing the impact of signal processing and machine
learning algorithms applied in subsequent stages of the study.

Fig. 6(b) presents the original discharge cycle for battery
B0006, recorded under similar conditions. The voltage profile
demonstrates the natural degradation behaviour associated with
aging lithium-ion cells. Like battery B0O0O0S, this signal remains
unprocessed and free of synthetic noise, preserving the integrity
of the raw dataset used for performance benchmarking.

Fig. 6(c) depicts the original discharge cycle of battery
B0007. This curve, along with those of B0O005 and B0006,
contributes to establishing a representative dataset of real-world
battery degradation without any artificial disturbances. These
original signals form the foundation for evaluating the
effectiveness of subsequent noise filtering and state-of-health
prediction techniques applied across different battery units.
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Fig. 7 shows the capacity profiles before and after applying
EMD filtering. The unfiltered trajectory, derived from noisy
voltage and current data, exhibits irregular fluctuations that are
inconsistent with typical battery degradation trends. These
deviations stem from synthetic noise introduced during pre-
processing and underscore the limitations of relying on raw data
for accurate SoH estimation. In contrast, the EMD-filtered
profile demonstrates a smoother and more coherent degradation
pattern, aligning more closely with expected aging behaviour.
This denoised capacity signal is subsequently used as a key
input feature in machine learning-based SoH prediction models.

Fig. 8(a) reaffirms the original discharge cycle of battery
B0005 from the NASA dataset, providing a baseline signal
prior to any noise intervention. The purpose of this repetition is
to validate the consistency of the data across multiple analysis
stages. Fig. 8(b) shows the same B0005 discharge cycle after
the addition of Gaussian noise. The introduced distortion
mimics real-life conditions such as sensor drift and
temperature-induced signal perturbation, providing a realistic
test case for filtering and prediction algorithms. Fig. 8(c)
demonstrates the denoised version of the B0005 discharge
cycle. The signal, processed using EMD filtering, shows a
significant reduction in noise while maintaining the essential
discharge characteristics. This confirms the effectiveness of
EMD filtering in preparing the data for robust feature
extraction.

The effectiveness of EMD filtering lies in its adaptive, data-
driven approach. Unlike conventional filters that use a fixed
basis function, EMD decomposes the signal into a series of
Intrinsic Mode Functions (IMFs) based on the local
characteristics of the data itself. This allows it to separate the
high-frequency measurement noise (captured in the initial
IMFs) from the underlying, slow-moving battery degradation
trend (captured in later IMFs and the final residual). By
reconstructing the signal without the noise-related IMFs, we
obtain a cleaner, more stable representation of the battery's
health, which serves as a superior input for the subsequent
machine learning models.
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Fig. 9. presents a comparative analysis of predicted and
actual SoH trajectories for batteries B0O005, B0006, and B0007
using three hybrid models: LSTM_EMD, SVM EMD, and
GRU_EMD. In Fig. 9(a), the LSTM_EMD model demonstrates
strong predictive performance, with predicted SoH curves
closely tracking the actual degradation patterns across all three
batteries. Fig. 9(b) shows similar results for the SVM_EMD
model, where the predicted curves align well with the true SoH
profiles, indicating effective modelling of degradation
dynamics. In Fig. 9(c), the GRU_EMD model also exhibits high
fidelity in capturing the temporal evolution of battery aging.
Although minor deviations appear during later degradation
stages, particularly in more abrupt capacity declines, the overall
trend alignment confirms the model’s robustness and
generalization across battery units. Collectively, these results
highlight the effectiveness of EMD-based pre-processing in
enhancing the predictive accuracy of data-driven SoH
estimation models.

Fig. 10(a) displays a regression plot for battery B000S5,
comparing predicted versus actual SoH values. Most data points
lie close to the identity line, reflecting high predictive accuracy
and low deviation in the SoH estimates. Fig. 10(b) presents the
regression plot for battery B0006. While the general correlation
between predicted and actual SoH remains strong, a slight
increase in variance is observed compared to B0005, suggesting
slightly reduced model stability for this cell. Fig. 10(c) shows
the regression analysis for battery BO007. The distribution of
points remains closely aligned with the identity line, indicating
that the model effectively generalizes across varying battery
conditions.

Fig. 11(a) shows the regression plot for battery B0O005 using
the LSTM_EMD model. Increased scatter around the diagonal
line highlights the model's reduced predictive precision. Fig.
11(b) presents regression results for battery B0006. The
dispersion of data points indicates less consistent performance
and a tendency toward higher prediction variance. Fig. 11(c)
shows the regression plot for battery B0007. The data points
exhibit considerable deviation from the identity line,
particularly at low SoH values, suggesting the model struggles
with capturing nonlinear degradation behaviour.

Fig. 12(a) displays the regression analysis for battery B0005
using the GRU EMD model. The prediction points are
generally well-aligned with the diagonal, supporting moderate
accuracy. Fig. 12(b) shows the regression plot for battery
B0006. The increased spread of points suggests a less precise
relationship between input features and predicted SoH. Fig.
12(c) presents regression results for battery B0O007. The model
shows improved predictive stability compared to LSTM,
although deviations from the identity line persist.
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For battery B0005, the LSTM EMD model achieves the
lowest RMSE (0.0077) and MAPE (0.9245 %), with a predicted
RUL of 44 cycles, closely matching the true RUL of 43. In
comparison, the SVM_EMD model also performs well with
slightly higher RMSE (0.0095) and MAPE (1.2806%) and a
higher regression score of 0.99156. The GRU EMD model
exhibits the highest error and underpredicts RUL significantly
at 31 cycles.

Fig. 12: Regression Analysis GRU EMD a) B05 b) B06 c)
B07
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For battery B0006, the SVM_EMD model again shows
strong performance with low RMSE (0.0232) and MAPE
(3.8553%). Its predicted RUL (56) is very close to the actual
value (58). The GRU_EMD model provides a slightly lower
RMSE than SVM_EMD but a less accurate RUL prediction.

For battery B0007, all models accurately predict the RUL at
63 cycles. However, the SVM_EMD model yields the lowest
error metrics (RMSE: 0.0152; MAPE: 1.7926%) and the
highest regression score (0.98269). The GRU EMD model

exhibits the highest error wvalues, indicating weaker
performance.
Among the three models, SVM _EMD consistently

demonstrates superior or highly competitive performance
across all battery units and metrics. This result is significant
because SVM is often considered a less complex model than
deep learning architectures like LSTM and GRU.

The outperformance of SVM_EMD can be attributed to
several factors: (1) data Efficiency and Robustness: The
training dataset consists of 100 cycles, which is relatively small
for training complex deep learning models from scratch. SVMs,
particularly with the Radial Basis Function (RBF) kernel, are
highly effective at finding non-linear relationships even with
limited data. They are less prone to overfitting on smaller
datasets compared to LSTMs and GRUs, which have a much
larger number of trainable parameters, (2) problem
Formulation: After EMD filtering and feature extraction (e.g.,
mean discharge voltage), the prediction task can be viewed as a
non-linear regression problem mapping a feature vector to an
SoH value for each cycle. SVMs are exceptionally well-suited
for this type of mapping. While battery degradation is
inherently a temporal process, the recurrent nature of LSTMs
and GRUs may be "overkill" if the extracted features already
encapsulate the necessary temporal information for a single-
step prediction, and (3) Simplicity and Generalization: The
relative simplicity of the SVM architecture contributes to its
strong generalization capabilities. LSTMs and GRUs are
designed to capture long-range dependencies in sequential data.
However, in this noisy, filtered dataset, they might struggle to
distinguish between the true, subtle degradation pattern and
residual noise artifacts, potentially leading to less stable
predictions. The SVM, by focusing on finding an optimal
hyperplane in a high-dimensional feature space, provides a
more robust solution that is less sensitive to minor fluctuations
in the input sequence.

Therefore, the combination of EMD's powerful denoising
and the SVM's efficient and robust regression capability makes
the SVM_EMD framework the most reliable method for
accurate battery SoH and RUL prediction in this study.

VI. CONCLUSION

Based on the observed performance gains, it is recommended
that future battery health prediction frameworks incorporate a
dedicated noise filtering stage such as EMD filtering prior to
regression modelling. This approach demonstrably enhances
prediction accuracy by reducing the impact of signal noise, a
common issue in real-world battery monitoring systems.
Specifically, for applications in electric vehicles, grid storage,

or portable electronics, where sensor data is often noisy and
incomplete, the two-stage SVM_EMD framework offers a low-
complexity yet highly effective solution. Additionally, further
research should investigate the integration of adaptive or
nonlinear filtering techniques, such as Extended Kalman Filters
(EKF) or Particle Filters, to handle non-Gaussian noise and
more complex degradation behaviours. Exploring real-time
deployment scenarios and evaluating the model's robustness
across different battery chemistries and usage profiles would
also help validate its generalizability. Finally, combining the
SVM_EMD model with lightweight edge-computing solutions
could support real-time health monitoring in embedded
systems, extending the method’s utility in industrial and
consumer-grade applications.

Overall, the integration of signal processing and machine
learning models offers a robust approach to battery prognostics.
Future work should focus on incorporating larger and more
diverse datasets, exploring attention mechanisms, and
validating across different battery chemistries to enhance model
generalizability and deployment feasibility.
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