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Abstract—Accurate prognostics of battery State-of-Health (SOH) 
and Remaining Useful Life (RUL) are paramount for the 
operational safety and economic feasibility of sustainable energy 
systems, yet are frequently hindered by noise-corrupted sensor 
data. This study introduces and validates a novel hybrid 
framework that integrates Empirical Mode Decomposition (EMD) 
as an adaptive signal pre-processing technique with advanced 
machine learning models to overcome this critical limitation. 
Utilizing the NASA Ames prognostic dataset with synthetically 
introduced Gaussian noise to simulate real-world conditions, we 
demonstrate that EMD-based filtering effectively denoises battery 
discharge profiles, revealing a more coherent degradation 
trajectory. A comparative analysis of the resulting hybrid models 
SVM_EMD, LSTM_EMD, and GRU_EMD conclusively shows 
that the SVM_EMD model delivers superior performance, 
consistently achieving the lowest Root Mean Square Error 
(RMSE) and Mean Absolute Percentage Error (MAPE), and 
providing the most accurate RUL predictions across all tested 
battery units. This research establishes the two-stage SVM_EMD 
framework as a robust, low-complexity, and highly effective 
solution for enhancing the reliability and longevity of batteries in 
real-world applications, underscoring the vital importance of 
dedicated signal pre-processing in battery prognostics. 

Keywords— Batteries, State-of-Health, Energy storage, RMSE, 
EMD.  

I. INTRODUCTION 
The global transition towards sustainable energy and 

transportation systems, a cornerstone of international 
frameworks like the United Nations' Sustainable Development 
Goals (SDGs), is fundamentally reliant on advanced energy 
storage technologies. Electric vehicles (EVs) and battery energy 
storage systems (BESS) are at the forefront of this paradigm 
shift, enabling decarbonization and enhancing grid stability. 
However, the operational viability and economic feasibility of 
these technologies hinge on the longevity and reliability of their 
core component: the battery. As batteries degrade through use, 

their capacity to store and deliver energy diminishes, posing 
significant challenges to performance, safety, and system 
reliability [1, 2, 3]. Consequently, the ability to accurately 
predict battery health and RUL is paramount, aligning with 
circular economy principles by maximizing asset lifespan, 
minimizing electronic waste, and ensuring the sustainable 
deployment of clean energy solutions [4]. 

The health of a battery, quantified by metrics such as SOH, 
reflects its current condition relative to its original 
specifications, particularly its capacity and internal resistance 
[5]. Precise SOH estimation and RUL prediction the forecast of 
when a battery will no longer meet performance thresholds are 
critical for implementing proactive maintenance strategies, 
preventing catastrophic failures, and optimizing operational 
efficiency [6, 7]. Battery degradation is a complex, 
multifactorial process influenced by a confluence of operational 
and environmental stressors. These include charge/discharge 
protocols, depth of discharge (DoD), and operating 
temperatures, which can accelerate electrochemical decay and 
structural fatigue within the cell [8, 9, 10, 11]. The inherent 
nonlinearity of this degradation process, further complicated by 
fluctuating external conditions [12], renders accurate life 
prediction a formidable scientific and engineering challenge. 

Historically, approaches to RUL prediction have relied on 
either empirical models or first-principle electrochemical 
models. Empirical methods, which employ curve-fitting on 
historical operational data, often lack the precision required for 
dynamic, real-world applications due to their inability to adapt 
to varying usage patterns [13, 14]. Conversely, electrochemical 
models, while providing high-fidelity simulations of internal 
cell dynamics, are computationally intensive and require 
extensive, often proprietary, knowledge of the battery's specific 
chemistry, limiting their practical implementation [15]. These 
limitations underscore the need for more sophisticated, data-
driven techniques that can capture the complex temporal 
dependencies and stochastic nature of battery degradation. 

To address these challenges, this study recognizes battery 
degradation as a complex time-series problem where the 
underlying health signals are frequently obscured by 
measurement noise and operational disturbances. The use of 
hybrid models, which combine signal processing techniques 
with machine learning algorithms, has gained traction. For 
instance, EMD has been successfully used to denoise sensor 
signals for fault diagnosis in rotating machinery [16]. More 
recently, the fusion of EMD with deep learning models like 
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LSTM has been explored for RUL prediction of bearings and 
other mechanical components [17]. However, a comprehensive 
analysis of EMD as a dedicated pre-processing step for various 
machine learning models (SVM, LSTM, and GRU) for battery 
SOH prediction, especially under noisy conditions, remains an 
area requiring deeper investigation. This research proposes a 
hybrid methodology to enhance the accuracy of RUL prediction 
by filling this gap. The primary objectives are twofold: (1) to 
develop a robust signal pre-processing technique using EMD to 
effectively denoise SOH data, and (2) to integrate this EMD 
based filtering with advanced machine learning models 
specifically Long Short-Term Memory (LSTM), Support 
Vector Machines (SVM), and Gated Recurrent Units (GRU) to 
build a more accurate and reliable prediction framework. By 
improving prognostic accuracy, this work aims to enhance the 
safety, reliability, and economic value of batteries in critical 
applications such as EVs and BESS. 

The remainder of this paper is structured as follows. Section 
2 provides a comprehensive review of existing literature on 
SOH and RUL estimation techniques and their associated 
challenges. Section 3 details the proposed methodology, 
elaborating on the EMD filtering process and its integration 
with the selected machine learning models. Section 4 presents 
the experimental setup and a comparative analysis of the 
results, validating the performance of the proposed approach 
against established benchmarks. Finally, Section 5 concludes 
the paper, summarizing the key findings, acknowledging the 
study's limitations, and proposing directions for future research.  

II. BATTERY DATASETS 
The datasets used in this study were provided by the NASA 

Ames Research Center and comprise cyclic aging data for three 
lithium nickel cobalt aluminium oxide cells, designated as 
B005, B006, B007 [18]. These 18650-form factor lithium-ion 
cells were manufactured by Idaho National Laboratory and 
featured a rated capacity of 2.0 Ah and a nominal voltage of 3.7 
V. The aging protocol involved controlled charging and 
discharging cycles. Charging was performed until the cell 
voltage reached 4.2 V, followed by constant voltage (CV) 
charging at 4.2 V until the current tapered below 20 mA. 
Discharging was conducted with end-of-discharge voltages set 
at 2.7 V (B005), 2.5 V (B006), and 2.2 V (B007). These 
variations in cutoff voltages were intended to induce different 
aging patterns among the cells. 

The cycling was continued until each cell’s capacity 
degraded to 70% of its nominal value. Throughout the testing, 
operational conditions such as temperature were controlled to 
minimize environmental influences. The datasets include 
detailed records of voltage, current, capacity, and temperature 
measurements across cycles, providing high-fidelity data 
suitable for modelling battery degradation and predicting RUL. 
Due to their comprehensive structure and experimental rigor, 
these datasets have been widely adopted in the literature for 
developing and validating prognostic health management 
(PHM) models, battery SOH estimation techniques, and 

advanced battery management strategies.  

III. METHOGOLOGY 
Fig. 1 illustrates a process for predicting the SoH of a battery 

using historical data from NASA (B05, B06, and B07) and 
EMD noise filtering. The process begins with loading historical 
battery data, followed by extracting relevant features from this 
dataset. To simulate real-world uncertainties, Gaussian noise is 
introduced into the extracted data. Subsequently, a Kalman 
filtering technique is applied to remove noise and enhance data 
quality before training the prediction model. 

 
Fig. 1. Flowchart of Battery Prediction 
 
Once the filtered data is prepared, it is used to train a model 

that predicts the SoH of the battery. A decision node checks 
whether the SoH of specific battery units (B05, B06, and B07) 
has been successfully predicted. If the prediction is incomplete, 
the process iterates; otherwise, it terminates. This structured 
approach ensures that the predictive model is trained on 
denoised and reliable data, improving the accuracy of battery 
health estimation.  

A. Research Framework 
To simulate real-world measurement uncertainties in 

battery data, Gaussian noise is introduced to the discharge cycle 
data. The function to introduce noise into first life of the battery 
which is first 100 cycle. Noise will be introduced to the 
measured current and voltage of each discharge cycle by adding 
a random noise component sampled from a Gaussian 
distribution with a 0.05 noise level. This process ensures that 
the dataset accounts for variability typically encountered in 
practical battery monitoring systems. The Gaussian Noise is 
computed using equation (1) 
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𝑥𝑥~ = 𝑥𝑥 +
1

√2𝛱𝛱𝜎𝜎2
𝑒𝑒
−(𝜘𝜘−𝑢𝑢)1
2𝜎𝜎2  (1) 

 
Where;  

• 𝑥𝑥~ represents the noisy signal, 
• x is the original signal, 
• 𝑢𝑢 mean of the noise, 
• 𝜎𝜎2 variance of the noise. 

In real-life battery systems, Gaussian noise represents 
measurement inaccuracies due to sensor imperfections, 
temperature fluctuations, and electronic interference. For 
instance, current and voltage sensors may exhibit drift or 
random fluctuations due to environmental factors, leading to 
minor deviations in recorded values. By incorporating Gaussian 
noise, the robustness of subsequent signal processing and state 
estimation techniques can be evaluated under realistic operating 
condition 

B. Compute New Capacity 
Battery capacity degradation is a key indicator of SoH. 

However, due to noise and measurement inconsistencies, raw 
capacity estimates may not accurately reflect the true battery 
degradation trend. Original battery capacity affected when 
noise introduced to the original data. By computing capacity 
from the filtered discharge data, a more reliable SoH estimate 
is obtained, reducing the impact of sensor errors and 
fluctuations in the dataset. The new capacity is computed using 
equation (2) 

 
𝐶𝐶 = −∫ 𝐼𝐼(𝑡𝑡)𝑑𝑑𝑑𝑑 (2) 

where I(t) represents the discharge current as a function of 
time. In the implementation, the Trapezoidal Rule is used for 
numerical integration. 

C. Empirical Mode Decomposition Filter 
To mitigate the effects of noise introduced in the previous 

step, EMD is applied to the discharge cycle data. EMD is a data-
driven, adaptive signal decomposition technique that iteratively 
separates a signal into intrinsic mode functions (IMFs) and a 
residual trend. Each voltage and current signal from the 
discharge cycles is decomposed using EMD into a finite set of 
IMFs representing oscillatory modes at distinct frequency 
scales. High-frequency IMFs, typically corresponding to noise, 
are identified and excluded from the reconstruction. The 
denoised signal is then obtained by summing the remaining 
IMFs and the residual component. This filtering operation is 
expressed in equation (3) 

𝑥𝑥(𝑡𝑡) = �𝑐𝑐𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑗𝑗=1

+ 𝑟𝑟𝑁𝑁(𝑡𝑡) (3) 

where ci(t) are IMFs and rN(t) is the residual. EMD is 
beneficial for removing noise from battery degradation signals, 
making it easier for LSTM to learn long-term dependencies. 

Fig. 2. illustrates the EMD process. The EMD algorithm 
decomposes a nonlinear and non-stationary signal into a finite 

set of Intrinsic Mode Functions (IMFs). It iteratively extracts 
oscillatory components by identifying local extrema, forming 
upper and lower envelopes via spline interpolation, and 
computing their mean. This mean is subtracted from the signal 
in a sifting process, repeated until an IMF is obtained. The 
residue is then used for further decomposition. This diagram 
summarizes each step involved in isolating IMFs with high 
noise from the original signal to compose become filtered 
signal. 

 
Fig. 2. EMD Filtering flow 

 
EMD filtering is selected over conventional linear filtering 

approaches and even multiresolution techniques such as EMD 
filtering due to its fully adaptive and data-driven nature. Unlike 
wavelet methods that require predefined basis functions, EMD 
directly extracts signal components based on the local extrema, 
making it particularly effective for processing non-linear and 
non-stationary signals such as battery discharge voltage and 
current profiles. This adaptability enables precise denoising 
while retaining critical transient features relevant to capacity 
estimation and battery health diagnostic. 

IV. SOH PREDICTION TECHNIQUES 
In this study, 100 initial discharge cycles were used for 

training, and the remaining 63 cycles served as the prediction 
dataset. The input features for prediction were the mean 
discharge voltage and mean discharge current extracted from 
each cycle. All input features and the target (State of Health, 
SoH) were normalized using z-score normalization based on the 
training set statistics and applied consistently to the test set. 
Model performance was validated using a temporal holdout 
method, where prediction was performed on remaining 63 
cycles. 

Z - score normalization equation; 

𝑍𝑍 =
𝑥𝑥 − 𝑢𝑢
𝜎𝜎

 (4) 

Where; 
• 𝑍𝑍is the 𝑍𝑍 - score, 
• 𝑥𝑥is the predicted value, 
• 𝑢𝑢is the mean of the dataset 
• 𝜎𝜎 is the standard deviation of dataset. 

Furthermore, the performance of various machine learning 
models for battery parameter prediction (such as capacity 
degradation or remaining useful life (RUL)) was evaluated 
using statistical metrics such as Root Mean Square Error 
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(RMSE), Mean Absolute Percentage Error (MAPE), and 
Regression Equation analysis. These evaluation techniques 
serve as critical tools for quantitatively assessing the accuracy 
and reliability of the predictive models used. 

 RMSE 

RMSE = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (5) 

 
Where; 

• 𝑦𝑦𝑖𝑖is the actual value, 
• 𝑦𝑦𝑖𝑖is the predicted value, 
• 𝑛𝑛 is the number of data points. 

RMSE is sensitive to large errors, as it squares the residuals 
before averaging. This makes it a suitable metric to penalize 
large deviations from the true battery health values. In the 
context of battery degradation prediction, a lower RMSE 
implies that the model is making predictions closer to the actual 
performance, especially in critical degradation stages. RMSE is 
particularly useful when large prediction errors are undesirable, 
as in EVs applications where battery health is safety critical. 

 MAPE 
MAPE = 100%

𝛱𝛱
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖
�𝛱𝛱

𝑖𝑖=1  (6) 
Where; 

• 𝑦𝑦𝑖𝑖is the actual value, 
• 𝑦𝑦𝑖𝑖is the predicted value, 
• 𝑛𝑛 is the number of data points. 

MAPE provides the average error as a percentage, making 
it easy to interpret. It is particularly useful in battery prediction 
scenarios because it allows comparison across datasets with 
different scales or capacities. A lower MAPE value indicates 
better model accuracy in predicting the battery behaviour over 
time. However, MAPE can be unstable when actual values are 
near zero, which must be considered during implementation. 

 Regression Equation 
𝑌𝑌𝑖𝑖 = 𝑓𝑓(𝑋𝑋𝑖𝑖 ,𝛽𝛽) + 𝑒𝑒𝑖𝑖 (7) 

Where; 
• 𝑌𝑌𝑖𝑖is the dependent variable, 
• 𝑓𝑓is the function, 
• 𝑋𝑋𝑖𝑖 is the independent variable, 
• 𝛽𝛽 is the y-intercept. 
• 𝑒𝑒𝑖𝑖is the error term or residual 

The regression line ideally should have a slope a≈1 and 
intercept b≈0. These indicate that the model accurately captures 
the trend of the battery’s actual performance. In battery health 
prediction, a high regression value supports the model’s ability 
to generalize across unseen data, while poor regression 
alignment can indicate bias or underfitting. 
Data charts which are typically black and white, but sometimes 
include color. 

 

A. SoH Estimation Using Support Vector Machine (SVM) 
SVM is a supervised learning algorithm widely used for 

classification and regression tasks. In the context of battery 
health prognosis, SVM regression is particularly effective for 

modelling nonlinear degradation patterns by projecting input 
features into a higher-dimensional feature space using a kernel 
function. This allows the model to capture complex 
relationships between extracted features (such as voltage time 
intervals) and the SoH of a battery. 

After obtaining the denoised discharge cycle data, features 
such as the Time Interval for End-of-Discharge Voltage Drop 
(TIEDVD) and Time Interval for End-of-Charge Voltage Drop 
(TIECVD) are extracted. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑡𝑡3.6𝑉𝑉 − 𝑡𝑡3.8𝑉𝑉 (8) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑡𝑡4.2𝑉𝑉 − 𝑡𝑡3.5𝑉𝑉 (9) 

Where: 
• 𝑡𝑡3.6𝑉𝑉is the time when discharge voltage first reaches 

3.6V, 
• 𝑡𝑡3.8𝑉𝑉is the time when discharge voltage first reaches 

3.8V, 
• 𝑡𝑡4.2𝑉𝑉is the time when charge voltage first reaches 

4.2V, 
• 𝑡𝑡3.5𝑉𝑉 is the time when charge voltage first reaches 

3.5V. 
These features, along with the filtered capacity data, serve 

as input predictors for training an SVM regression model. The 
model is trained using 100 cycles of first-life battery data, and 
tested on the remaining 63 cycles, simulating a realistic future 
prediction scenario. The regression function learned by SVM is 
represented by: 
𝑓𝑓(𝑥𝑥) = 𝜔𝜔𝑇𝑇𝜙𝜙(𝑥𝑥) + 𝑏𝑏 (10) 
Where; 

• x is the input feature vector,  
• 𝜙𝜙(𝑥𝑥) is a transformation function,  
• 𝜔𝜔 is the weight vector,  
• b is the bias term. 

In this study, the Gaussian Radial Basis Function (RBF) 
kernel was used, which is well-suited for nonlinear regression 
tasks such as SoH prediction. The Gaussian kernel enables the 
SVM model to learn complex, non-linear relationships between 
the features and the target output. 

The Gaussian RBF kernel is defined as: 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝑒𝑒𝑒𝑒𝑒𝑒 �
−�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�

2

2𝜎𝜎2
� (11) 

Where; 
• 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗  are feature vectors from two different cycles, 

• �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2
 is the squared Euclidean distance 

between them, 
• 𝜎𝜎 (or KernelScale) controls the kernel’s spread. 
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Fig. 3. Structure of the SVM Network 

 
Fig. 3. shows the architecture of the SVM used for 

regression-based SoH estimation. The SVM model receives a 
feature vector comprising filtered capacity values and voltage 
time intervals. These features are mapped into a higher-
dimensional space through a kernel function, enabling the 
model to capture nonlinear degradation trends in battery 
performance. The output is a scalar value representing the 
predicted SoH. The training process involves tuning 
hyperparameters such as the kernel scale, box constraint, and 
epsilon to optimize model generalization. This structure 
provides a balance between complexity and accuracy, allowing 
the model to learn degradation behaviours even with limited 
training data. 

B. SoH Estimation Using Long Short-Term Memory (LSTM) 
In battery prediction, LSTMs are widely used for 

forecasting the RUL and SOH based on historical sensor data, 
such as voltage, current, and temperature. The model processes 
past battery performance data in a sequential manner, capturing 
long-term dependencies to predict future degradation trends. 
During training, the LSTM learns complex temporal 
relationships by minimizing a loss function, typically Mean 
Squared Error (MSE), using backpropagation through time 
(BPTT). Once trained, the model can accurately estimate 
battery aging and failure points, helping optimize energy 
management systems and predictive maintenance strategies. 
Variants like bidirectional LSTMs and attention mechanisms 
further enhance predictive accuracy by considering 
dependencies in both past and future time steps. 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1′𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (12.1) 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1′𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (12.2) 
𝐶𝐶~𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐 ⋅ [ℎ𝑡𝑡−1′𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (12.3) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⋅ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⋅ 𝐶𝐶~𝑡𝑡 (12.4) 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1′𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (12.5) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⋅ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡) (12.6) 
Where; 

• 𝑓𝑓𝑡𝑡 , 𝑖𝑖𝑡𝑡 , 𝑜𝑜𝑡𝑡are forget, input, and output gates. 
• 𝐶𝐶𝑡𝑡is the cell state. 
• ℎ𝑡𝑡 is the hidden state. 
• 𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖 ,𝑊𝑊𝑐𝑐 ,𝑊𝑊𝑜𝑜and 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑐𝑐 , 𝑏𝑏𝑜𝑜 are weights and 

biases. 
 

 
Fig. 4. Structure of the LSTM Network 

 
Fig. 4. presents the LSTM network used for sequential 

modelling of battery data. The LSTM processes time-series 
inputs voltage, current, and temperature capturing both short-
term fluctuations and long-term degradation patterns. The 
internal architecture consists of input, forget, and output gates 
that regulate the information flow, and a memory cell that 
retains relevant features across cycles. During training, the 
network minimizes prediction error using BPTT. This memory-
enhanced structure is particularly effective for applications 
where battery degradation evolves gradually over long 
operational periods. 

C. SoH Estimation Using Gated Recurrent Units (GRU) 
In battery prediction tasks, GRUs are commonly employed 

to forecast the RUL and SOH based on historical sensor data, 
including voltage, current, and temperature. GRUs process 
battery performance data in a sequential manner, capturing 
temporal dependencies without the need for a separate cell 
state, as used in LSTMs. Instead, GRUs rely on an update gate 
and reset gate to regulate the flow of information. During 
training, the GRU model learns complex temporal patterns by 
minimizing a loss function typically Mean Squared Error 
(MSE) through BPTT. Once trained, it can effectively estimate 
battery aging and predict failure events, contributing to 
optimized energy management systems and predictive 
maintenance. Enhancements such as bidirectional GRUs and 
attention mechanisms further improve performance by allowing 
the model to consider both past and future dependencies. 

The GRU operates according to the following equations: 
𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ∗ [ℎ𝑡𝑡−1′𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (13.1) 
𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ∗ [ℎ𝑡𝑡−1′𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (13.2) 
ℎ~𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎ ∗ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1′𝑥𝑥𝑡𝑡]

+ 𝑏𝑏ℎ) (13.3) 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ~𝑡𝑡 (13.4) 
Where; 

• 𝑧𝑧𝑡𝑡 , 𝑟𝑟𝑡𝑡are the update and reset gates. 
• ℎ~𝑡𝑡is the cell state. 
• ℎ𝑡𝑡 is the hidden state. 
• 𝑊𝑊𝑧𝑧 ,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎand 𝑏𝑏𝑧𝑧 , 𝑏𝑏𝑟𝑟 , 𝑏𝑏ℎ are the model weights and 

biases. 
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Fig. 5. Structure of the GRU Network 

 
Fig. 5. illustrates the architecture of the GRU model, an 

alternative to LSTM with reduced complexity. Unlike LSTM, 
GRU does not maintain a separate memory cell; instead, it 
utilizes update and reset gates to manage the internal hidden 
state. This architecture enables the model to learn temporal 
dependencies with fewer parameters and computational cost. 
GRUs are particularly well-suited for real-time 
implementations where efficiency is critical, yet the model still 
needs to track degradation over time with reasonable precision. 

V. RESULTS AND DISCUSSION 
Fig. 6(a) shows the original discharge cycle of battery B0005 

from the NASA dataset, representing the baseline voltage 
response during a standard discharge event. The curve captures 
the characteristic voltage drop over time as the battery depletes 
its stored energy. This signal serves as the unaltered reference 
for analysing the impact of signal processing and machine 
learning algorithms applied in subsequent stages of the study.  

Fig. 6(b) presents the original discharge cycle for battery 
B0006, recorded under similar conditions. The voltage profile 
demonstrates the natural degradation behaviour associated with 
aging lithium-ion cells. Like battery B0005, this signal remains 
unprocessed and free of synthetic noise, preserving the integrity 
of the raw dataset used for performance benchmarking. 
  Fig. 6(c) depicts the original discharge cycle of battery 
B0007. This curve, along with those of B0005 and B0006, 
contributes to establishing a representative dataset of real-world 
battery degradation without any artificial disturbances. These 
original signals form the foundation for evaluating the 
effectiveness of subsequent noise filtering and state-of-health 
prediction techniques applied across different battery units. 

 
(a) 

 
(b) 

 
(c) 

Fig.  6. a) Original B05 battery discharge cycle from NASA 
b) Original B06 battery discharge cycle from NASA c) 
Original B07 battery discharge cycle from NASA dataset 

 



Sofiuddin et.al.: Predicting Battery Health for Energy Storage and Electric Vehicles Systems by Integrating EMD Signal Processing and Machine Learning 
 
 

151 
 

 
Fig. 7. Original and filtered capacity 

 
Fig. 7 shows the capacity profiles before and after applying 

EMD filtering. The unfiltered trajectory, derived from noisy 
voltage and current data, exhibits irregular fluctuations that are 
inconsistent with typical battery degradation trends. These 
deviations stem from synthetic noise introduced during pre-
processing and underscore the limitations of relying on raw data 
for accurate SoH estimation. In contrast, the EMD-filtered 
profile demonstrates a smoother and more coherent degradation 
pattern, aligning more closely with expected aging behaviour. 
This denoised capacity signal is subsequently used as a key 
input feature in machine learning-based SoH prediction models. 

Fig. 8(a) reaffirms the original discharge cycle of battery 
B0005 from the NASA dataset, providing a baseline signal 
prior to any noise intervention. The purpose of this repetition is                                                                                                       
to validate the consistency of the data across multiple analysis 
stages. Fig. 8(b) shows the same B0005 discharge cycle after 
the addition of Gaussian noise. The introduced distortion 
mimics real-life conditions such as sensor drift and 
temperature-induced signal perturbation, providing a realistic 
test case for filtering and prediction algorithms. Fig. 8(c) 
demonstrates the denoised version of the B0005 discharge 
cycle. The signal, processed using EMD filtering, shows a 
significant reduction in noise while maintaining the essential 
discharge characteristics. This confirms the effectiveness of 
EMD filtering in preparing the data for robust feature 
extraction. 

The effectiveness of EMD filtering lies in its adaptive, data-
driven approach. Unlike conventional filters that use a fixed 
basis function, EMD decomposes the signal into a series of 
Intrinsic Mode Functions (IMFs) based on the local 
characteristics of the data itself. This allows it to separate the 
high-frequency measurement noise (captured in the initial 
IMFs) from the underlying, slow-moving battery degradation 
trend (captured in later IMFs and the final residual). By 
reconstructing the signal without the noise-related IMFs, we 
obtain a cleaner, more stable representation of the battery's 
health, which serves as a superior input for the subsequent 
machine learning models. 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8.: a) Original B05 battery discharge cycle from NASA 
b) Battery discharge cycle after introduction of noise in B05 
battery c) Discharge cycle of B05 battery after denoising 
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Fig. 9. presents a comparative analysis of predicted and 
actual SoH trajectories for batteries B0005, B0006, and B0007 
using three hybrid models: LSTM_EMD, SVM_EMD, and 
GRU_EMD. In Fig. 9(a), the LSTM_EMD model demonstrates 
strong predictive performance, with predicted SoH curves 
closely tracking the actual degradation patterns across all three 
batteries. Fig. 9(b) shows similar results for the SVM_EMD 
model, where the predicted curves align well with the true SoH 
profiles, indicating effective modelling of degradation 
dynamics. In Fig. 9(c), the GRU_EMD model also exhibits high 
fidelity in capturing the temporal evolution of battery aging. 
Although minor deviations appear during later degradation 
stages, particularly in more abrupt capacity declines, the overall 
trend alignment confirms the model’s robustness and 
generalization across battery units. Collectively, these results 
highlight the effectiveness of EMD-based pre-processing in 
enhancing the predictive accuracy of data-driven SoH 
estimation models. 

Fig. 10(a) displays a regression plot for battery B0005, 
comparing predicted versus actual SoH values. Most data points 
lie close to the identity line, reflecting high predictive accuracy 
and low deviation in the SoH estimates. Fig. 10(b) presents the 
regression plot for battery B0006. While the general correlation 
between predicted and actual SoH remains strong, a slight 
increase in variance is observed compared to B0005, suggesting 
slightly reduced model stability for this cell. Fig. 10(c) shows 
the regression analysis for battery B0007. The distribution of 
points remains closely aligned with the identity line, indicating 
that the model effectively generalizes across varying battery 
conditions. 

Fig. 11(a) shows the regression plot for battery B0005 using 
the LSTM_EMD model. Increased scatter around the diagonal 
line highlights the model's reduced predictive precision. Fig. 
11(b) presents regression results for battery B0006. The 
dispersion of data points indicates less consistent performance 
and a tendency toward higher prediction variance. Fig. 11(c) 
shows the regression plot for battery B0007. The data points 
exhibit considerable deviation from the identity line, 
particularly at low SoH values, suggesting the model struggles 
with capturing nonlinear degradation behaviour. 

Fig. 12(a) displays the regression analysis for battery B0005 
using the GRU_EMD model. The prediction points are 
generally well-aligned with the diagonal, supporting moderate 
accuracy. Fig. 12(b) shows the regression plot for battery 
B0006. The increased spread of points suggests a less precise 
relationship between input features and predicted SoH. Fig. 
12(c) presents regression results for battery B0007. The model 
shows improved predictive stability compared to LSTM, 
although deviations from the identity line persist. 

 
 
 
 

 
(a) 

 
(b) 

 

 
(c) 

Fig. 9. SoH Comparison a) LSTM_EMD, b) SVM_EMD, c) 
GRU_EMD 
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(a) 

 
(b) 

 
(c) 

Fig. 10. Regression Analysis SVM_EMD a) B05 b) B06 c) 
B07 

 
 

 

 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig.  11. Regression Analysis LSTM_ EMD a) B05 b) B06 
c) B07 
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(a) 

 
(b) 

 
(c) 

Fig.  12: Regression Analysis GRU_ EMD a) B05 b) B06 c) 
B07 

 
 
 

TABLE I. RMSE, MAPE, RUL AND REGRESSION MACHINE 
LEARNING_EMD 

BattName 

SVM_EMD 

RMS

E 
MAP

E (%) 

Tru

e 

RU

L 

Predicted 

RUL 
Regression 

"B0005" 0.0095 1.2806 44 40 0.99156 

"B0006" 0.0232 2.7429 58 56 0.97981 

"B0007" 0.0152 1.7926 63 63 0.98269 

BattName 

LSTM_EMD 

RMS

E 
MAP

E (%) 

Tru

e 

RU

L 

Predicted 

RUL 
Regression 

"B0005" 
0.007

7 
0.9245 43 44 0.97737 

"B0006" 
0.028

8 
3.8553 55 42 0.98162 

"B0007" 
0.028

3 
3.4790 63 63 0.95767 

BattName 

GRU_EMD 

RMS

E 
MAP

E (%) 

Tru

e 

RU

L 

Predicted 

RUL 
Regression 

"B0005" 
0.026

3 
3.5607 43 31 0.97810 

"B0006" 
0.023

6 
3.1371 54 52 0.98399 

"B0007" 
0.045

6 
5.7281 63 63 0.94311 

 
Table 1 presents a comparative evaluation of three hybrid 

models SVM_EMD, LSTM_EMD, and GRU_EMD based on 
Root Mean Square Error (RMSE), Mean Absolute Percentage 
Error (MAPE), RUL prediction accuracy, and regression scores 
for batteries B0005, B0006, and B0007. These metrics 
collectively assess the model performance in predicting the 
SoH and estimating battery life span. 

For battery B0005, the LSTM_EMD model achieves the 
lowest RMSE (0.0077) and MAPE (0.9245 %), with a predicted 
RUL of 44 cycles, closely matching the true RUL of 43. In 
comparison, the SVM_EMD model also performs well with 
slightly higher RMSE (0.0095) and MAPE (1.2806%) and a 
higher regression score of 0.99156. The GRU_EMD model 
exhibits the highest error and underpredicts RUL significantly 
at 31 cycles. 
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For battery B0006, the SVM_EMD model again shows 
strong performance with low RMSE (0.0232) and MAPE 
(3.8553%). Its predicted RUL (56) is very close to the actual 
value (58). The GRU_EMD model provides a slightly lower 
RMSE than SVM_EMD but a less accurate RUL prediction. 

For battery B0007, all models accurately predict the RUL at 
63 cycles. However, the SVM_EMD model yields the lowest 
error metrics (RMSE: 0.0152; MAPE: 1.7926%) and the 
highest regression score (0.98269). The GRU_EMD model 
exhibits the highest error values, indicating weaker 
performance. 

Among the three models, SVM_EMD consistently 
demonstrates superior or highly competitive performance 
across all battery units and metrics. This result is significant 
because SVM is often considered a less complex model than 
deep learning architectures like LSTM and GRU.  

The outperformance of SVM_EMD can be attributed to 
several factors: (1) data Efficiency and Robustness: The 
training dataset consists of 100 cycles, which is relatively small 
for training complex deep learning models from scratch. SVMs, 
particularly with the Radial Basis Function (RBF) kernel, are 
highly effective at finding non-linear relationships even with 
limited data. They are less prone to overfitting on smaller 
datasets compared to LSTMs and GRUs, which have a much 
larger number of trainable parameters, (2) problem 
Formulation: After EMD filtering and feature extraction (e.g., 
mean discharge voltage), the prediction task can be viewed as a 
non-linear regression problem mapping a feature vector to an 
SoH value for each cycle. SVMs are exceptionally well-suited 
for this type of mapping. While battery degradation is 
inherently a temporal process, the recurrent nature of LSTMs 
and GRUs may be "overkill" if the extracted features already 
encapsulate the necessary temporal information for a single-
step prediction, and (3) Simplicity and Generalization: The 
relative simplicity of the SVM architecture contributes to its 
strong generalization capabilities. LSTMs and GRUs are 
designed to capture long-range dependencies in sequential data. 
However, in this noisy, filtered dataset, they might struggle to 
distinguish between the true, subtle degradation pattern and 
residual noise artifacts, potentially leading to less stable 
predictions. The SVM, by focusing on finding an optimal 
hyperplane in a high-dimensional feature space, provides a 
more robust solution that is less sensitive to minor fluctuations 
in the input sequence. 

Therefore, the combination of EMD's powerful denoising 
and the SVM's efficient and robust regression capability makes 
the SVM_EMD framework the most reliable method for 
accurate battery SoH and RUL prediction in this study. 

 
VI. CONCLUSION 

Based on the observed performance gains, it is recommended 
that future battery health prediction frameworks incorporate a 
dedicated noise filtering stage such as EMD filtering prior to 
regression modelling. This approach demonstrably enhances 
prediction accuracy by reducing the impact of signal noise, a 
common issue in real-world battery monitoring systems. 
Specifically, for applications in electric vehicles, grid storage, 

or portable electronics, where sensor data is often noisy and 
incomplete, the two-stage SVM_EMD framework offers a low-
complexity yet highly effective solution. Additionally, further 
research should investigate the integration of adaptive or 
nonlinear filtering techniques, such as Extended Kalman Filters 
(EKF) or Particle Filters, to handle non-Gaussian noise and 
more complex degradation behaviours. Exploring real-time 
deployment scenarios and evaluating the model's robustness 
across different battery chemistries and usage profiles would 
also help validate its generalizability. Finally, combining the 
SVM_EMD model with lightweight edge-computing solutions 
could support real-time health monitoring in embedded 
systems, extending the method’s utility in industrial and 
consumer-grade applications. 

Overall, the integration of signal processing and machine 
learning models offers a robust approach to battery prognostics. 
Future work should focus on incorporating larger and more 
diverse datasets, exploring attention mechanisms, and 
validating across different battery chemistries to enhance model 
generalizability and deployment feasibility. 
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