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Abstract— The Malay language is a major language in the 
Austronesian family and is commonly spoken in various parts in 
Southeast Asia (SEA). Despite its many native speakers, research 
on intelligent techniques to analyse the language has been limited. 
In this paper, we present a Long Short-Term Memory (LSTM) to 
perform dialect recognition for the Malay Language. 240 samples 
were collected from 10 native dialect speakers to perform the 
experiments. Subsequently, we represented the raw audio 
recordings as Mel Frequency Cepstrum Coefficient (MFCC) 
features to train the LSTM classifier. The results achieved 98.20% 
classification accuracy, comparable to similar current methods. 
 
Index Terms— Malay language, dialect classification, Long Short-
Term Memory (LSTM) Neural Network, Mel Frequency Cepstral 
Coefficient (MFCC). 

I. INTRODUCTION 
Austronesian languages are widely spoken in Southeast Asia 

spoken by approximately 386 million people. The Malay 
(/məˈleɪ/ /[1]; Bahasa Melayu, بھاس ملایو)  language is a major 
language in Austronesian family, and is commonly spoken in 
South East Asia (SEA) such as Malaysia, Indonesia, Singapore, 
Brunei, and parts of Thailand [2], [3], [4], [5]. The language 
consists of 36 phonemes, consisting of 27 consonants, three 
diphthongs and six vowels [6], [7] structured into seven types 
of words syllables [7].  Malay is the primary  spoken language 
in Malaysia and Indonesia with 290 million native speakers 
located across coast of the Malaysia, eastern coast of Sumatra 
in Indonesia, Sabah, Sarawak and across the Strait of Malacca 
[8], [9]. The standard Malay Language has various official 
names as the national language for several countries in SEA. 
Malaysia with an estimated population of 32.4 million people 
[10] use Malay as the official language.  

 

However, with geographical diversity, the language is 
spoken in different dialects across the country [11]. Although 
English is commonly spoken, the number of people that can 
communicate fluently with the language is limited, especially 
in rural areas [9].  

In speech recognition, however, most of deep learning 
technology that has been implemented focused on English and 
Chinese speech recognition [12]. Despite much research being 
devoted to dialect recognition (see [13]–[16] for recent papers), 
the number of studies focusing on the Malay language is limited 
even with the language’s many native speakers and significance 
in the SEA region. Additionally, research by [17] discovered 
that although there has been some studies on standard Malay 
pronunciation, the research for the Malay dialects are still 
limited. 

Dialect recognition is a subset of Natural Language 
Processing (NLP) and speech recognition due to richness of 
natural language [18], a branch of Artificial Intelligence (AI) 
focused on capturing the semantics of verbal communication. It 
is a challenging task [19] as there is limited measurement that 
can be used as a standard to differentiate between the variety of 
dialects even in same language [20]. However, it is particularly 
useful in developing speech recognition applications tailored to 
non-English speakers. 

Recent advancements in the field of AI have introduced new 
techniques for modelling many types of complex data. Among 
them, the LSTM model has shown significant potential. The 
LSTM is a part of the Deep Learning Neural Network paradigm 
[21] introduced in 1997 by Hochreiter and Schmidhuber [22]. 
The model extends the capability of Recurrent Neural Networks 
(RNN) to eliminate the vanishing gradient problem [23]. In 
contrast to traditional feedforward multi-layer perceptron 
neural network, LSTM has feedback (recurrent) connections. 
This structure allows the LSTM store memory from long term 
temporal dependencies [24], [25]. Additionally, the LSTM can 
process either single data points, or entire sequences of data 
depending on its target usage [26]. It can be used in regression 
tasks (function approximation and forecasting) [27], as well as 
pattern classification tasks (such as image or speech 
recognition) [26].  

The structure of LSTM consists of cells (nodes) that have the 
capability to include or exclude certain parts of the data 
sequence using special gates  [23], [28]. Therefore, LSTM can 
learn to remember or forget the internal resources of the storage 
unit (if necessary), it has powerful capabilities in processing 
sequential data thereby avoiding the network collapse caused 
by the unlimited growth of the state. By having memory inside 
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the hidden layer cells, LSTM will have self-connection thereby 
allowing it to store their temporary state [29]. Learning is done 
by performing forward and backward propagation, where the 
input data will cross concentrating on the weight from input to 
the output unit [30].  

In this paper, we present a Long Short-Term Memory 
(LSTM) to perform dialect recognition for the Malay Language. 
LSTM is a neural network especially designed to learn and 
generalize from long data sequences, such as sound. We 
represent the raw audio recordings as Mel Frequency Cepstrum 
Coefficient (MFCC) features to train the LSTM classifier. The 
reasons for our choice of techniques are: 
• In [30], LSTM has been shown to outperformed the Hidden 

Markov Model (HMM) in Persian phoneme recognition 
using the FARSDAT speech database. In [31], LSTM was 
shown to outperform Gated Recurrent Unit (GRU), 
Recurrent Neural Network (RNN) and Logistic Regression, 
respectively. Additionally, LSTM has been shown to 
outperform RNN in terms of training speed [32]. 

• MFCC models the human auditory system to represent audio 
features [33], [34]. The features, represented as Mel 
Cepstrum (MC) are very descriptive and have successfully 
been applied in research [35] (see [13], [15], [16], [36]–[38] 
for examples). The richness of representation is dependent on 
two parameters, namely the number of filter banks and the 
number of coefficients.  

II. METHODOLOGY 

A. Hardware Specification 
The entire scope of this research project, encompassing all 

phases from initial data preprocessing and algorithm 
development through to model training, simulation, and final 
results analysis, was comprehensively realized using the 
MATLAB software environment, specifically leveraging the 
features in MATLAB release 2020a on a computer with 
specifications listed in Table 1. The GPU was used to accelerate 
network training using its highly parallel graphics processors. 

 
TABLE I. HARDWARE SPECIFICATION  
Item Specification 

Central Processing Unit (CPU) Intel® Core™ i5-6400 CPU 2.7 
GHz 

Graphics Processing Unit (GPU) NVIDIA GeForce GTX 1080 Ti 
Random Access Memory (RAM) 20GB 

Development Environment MATLAB R2020a 

 

B. Experiment Description 
Fig. 1 shows the important parts in this paper. There are four 

major parts, namely data collection to gather the necessary raw 
data. This raw data then undergoes MFCC extraction, a process 
that transforms it into meaningful feature sequences capturing 
audio characteristics. These sequences are subsequently fed 
into an LSTM training phase, where a Long Short-Term 
Memory network learns to identify temporal patterns within the 
data. Finally, a thorough performance analysis is conducted by 
testing the trained LSTM model on unseen data, using metrics 
like accuracy to evaluate its effectiveness and reliability. 

 

 
Fig. 1. Experiment flowchart 

 
1) Data Collection  

Ten subjects (native Malay dialect speakers, five male and 
five female) were required to utter 20 different words (Table 2) 
ten times each. The subjects’ age range was 25 to 35 years old 
to ensure clear and fluent pronunciation of their respective 
dialects. Additionally, an interview was conducted to collect 
information on the region in which they were born and how 
long they have lived in the region.  

The selected words were validated by our language expert, 
Mrs. Zuraidah Jantan, a Malay language researcher from the 
Academy of Language Studies, Universiti Teknologi MARA, 
Malaysia. The expert examined the phonetics of the words to 
ensure that the dialects can be differentiated. The language 
expert also translated the words to the International Phonetic 
Association (IPA) Standard Transcription.  

The recording process was done inside a silent room without 
any outside disturbance. The device used for recording is the 
SONY ICD-UX560F Digital Voice Recorder in MP3/LPCM 
format file with a high-sensitivity Stereo-Microphone and noise 
cut function available with low cut filter. The recording 
sampling rate was set to 44.1 kHz. 

TABLE II. WORDS USED FOR DATASET COLLECTION 

Standard 

IPA 
Standard 

Transcripti
on 

Easter
n 

IPA 
Eastern 

Transcripti
on 

Norther
n 

IPA  
Northern 

Transcripti
on 

Saya [saya] Sayo [sayƆ] Saya [saya] 
Besar [bǝsar] Besa [bǝsa] Besaq [bǝsaʕ] 
Keluar [kǝluar] Kelua [kǝlua] Keluaq [kǝluaʕ] 
Tikus [tikus] tikuh [tikuh] tikuyh [tikujh] 
Beras [bǝras] berah [bǝɤah] berah [bǝɤah] 
Tebal [tǝbal] teba [tǝba] tebaiyh [tǝbaj] 
Awal [Ɂawal] awa [awa] awai [awaj] 
Biar [biar] Bia [biʲa] biaq [biaʕ] 
Atas [atas] atah [atah] atah [atah] 

Belajar [bǝlaǰar] belaja [bǝlaja] belaǰaq [bǝlaǰaʕ] 

Bungkus [bungkus] bukuh [bukuh] bungku
ih [buŋkujh] 

Lapar [lapar] lapa [lapa] lapaq [lapaʕ] 
Tawar [tawar] tawa [tawa] tawaq [tawaʕ] 
Ular [ular] Ula [ula] ulaq [ulaʕ] 

Kerbau [kǝrbau] Kuba [kuba] kebaw [kǝbaw] 

Kakak [kakaɁ] Kako
k [kakƆɁ] kakaq [kakaɁ] 

Buaya [buaja] boyo [bƆjƆ] boya [bƆja] 
Hitam [hitam] Hite [itƐ̴] itam [itam] 
Pahit [pahit] pahik [pahiɁ] payt [pajt] 
Lepas [lǝpas] lepah [lepah] lepah [lǝpah] 
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2) MFCC Feature Extraction 
Five important steps exist in MFCC: framing & windowing, 

Fast Fourier Transform (FFT), Mel Frequency (MF) Shifting, 
Logarithm, and Discrete Cosine Transform (DCT). They are 
described in the following paragraphs. 

The first step in MFCC is to represent it in a lower dimension 
by a process called framing to simplify analysis. The structure 
divides the signal into low-dimension time intervals [39]. The 
typical frame size (sampling window) used is typically 25 
milliseconds [40]. To align with this sampling window, the 
frame size adopted in this study is approximately 20 to 40 
milliseconds. The framing process creates discontinuities at the 
beginning and end of each frame. Windowing was applied to 
the frames to reduce the discontinuity effect. This was done by 
applying a Hamming window at the beginning and end of the 
frames to create a smoother transition between them [41]. 
Subsequently, FFT was applied to convert the time series 
frames into the frequency domain.  

MFCC is a feature representation method that mimics human 
auditory characteristics. There are two parameters that 
influence the extraction features for MFCC, namely the number 
of bandpass filter banks and the default number of coefficients 
for yielding the best performance [42][43]. The number of 
coefficients is 12 since the magnitude for coefficient is smaller 
than this value. The method is particularly sensitive to these 
parameters, as they control the richness of the feature 
representation, which consequently affects the accuracy of the 
classifier model (in this case, LSTM). Mel Frequency Banks are 
special filters responsible for capturing information from the 
frames in (1). 

𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓) = 2,595 �𝑙𝑙𝑙𝑙 �1 +
𝑓𝑓

700
�� (1) 

 
where f is the sampling frequency. 

Subsequently, the Discrete Cosine Transform (DCT) 
converts the frequency representation back to normal form 
using (2). 

𝑐𝑐(𝑛𝑛) = � 𝑌𝑌(𝑚𝑚)𝑐𝑐𝑐𝑐𝑐𝑐⌊
𝑚𝑚𝑚𝑚(𝑚𝑚 − 1

2)
𝑁𝑁

⌋
𝑀𝑀

𝑚𝑚=1

 (2) 

 
where 𝑐𝑐(𝑛𝑛) stands for the MFCC, 𝑚𝑚 is the number of 
coefficients, and 𝑁𝑁 is the number of triangular bandpass filters.  
𝑀𝑀 is the sum of the cepstrum coefficients of the Mel scale, and 
𝑌𝑌(𝑚𝑚) is the multiplication result in the conjugate spectrum. As 
a result of the MFCC processing, the signal segment is 
multiplied by the Hamming window, in which the width of 25 
ms and the subsequent frame overlap by 50%, and FFT is 
applied to each frame. If the filter bank between 20 and 40 
triangular filters is used, and only 10-20 coefficients are 
calculated from the filter bank. Each data point produces three-
dimensional feature points. These feature points were then 
rearranged as column vectors into a large feature matrix used to 
train the LSTM [44]. To fit into the LSTM’s network structure, 
the optimal dimension was determined to be ten. 

 

3) LSTM Training 
The LSTM neural network was used to classify the dialects. 

LSTM consists of memory-capable cells that can remember 
values over arbitrary time intervals. Each cell contains three 
major elements, namely the input, output and forget gates that 
regulate information flow into and out of the cell (Fig. 2) [23], 
[45], [46]. The cell holds the memory of the LSTM and is 
responsible for observing the trail of needs between the 
elements in the input sequence, which to an extent can decide 
on the new value flowing into the cell. Then the forget gate will 
decide to what extent the value is maintained in the cell and the 
output gate controls to what extent the value cell is used to 
compute the output activation of LSTM [47]. The number of 
cells is an adjustable LSTM parameter. Typically, it is 
optimally configured to minimize network error. We set the 
number of cells to 100 in our experiments. 

 
Fig. 2. LSTM cell structure [48]. 
By examining the structure given in Fig. 2, where 𝑋𝑋 = (𝑥𝑥1, 

𝑥𝑥2,, ..., 𝑥𝑥𝑁𝑁 and 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑙𝑙) denotes the input sequence, the input 
(𝑖𝑖𝑡𝑡), forget (𝑓𝑓𝑡𝑡) and output (𝑜𝑜𝑡𝑡) gates’ operations are 
mathematically shown by (3) to  (5), respectively [23]. 

 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (3) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (4) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (5) 
 

The cell state (𝑐𝑐𝑡𝑡) and hidden state (ℎ𝑡𝑡) are each described 
by (6) and (7). 

 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (6) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑐𝑐𝑡𝑡) (7) 
 
where 𝑊𝑊𝑖𝑖,𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐ϵ 𝑅𝑅𝑑𝑑∗𝑙𝑙and 𝑉𝑉𝑖𝑖,𝑉𝑉𝑓𝑓,𝑉𝑉𝑜𝑜,𝑉𝑉𝑐𝑐 ϵ 𝑅𝑅𝑑𝑑∗𝑑𝑑 are 
trained matrices. 𝑏𝑏𝑖𝑖,𝑏𝑏𝑓𝑓 ,𝑏𝑏𝑜𝑜,𝑏𝑏𝑐𝑐 are trained biases. d is the hidden 
layer size of LSTM. 𝜎𝜎 denotes sigmoid function and ⊙ denotes 
element-wise multiplication. 

The layers parameters for constructing the LSTM network 
are shown in Table III. The LSTM networks was trained using 
MFCC features for recorded voices as input features. 
Bidirectional LSTM cells are needed for the network to learn 
from the complete time series at each time step. The 
classification layer outputs the Malay dialect and the word 
pronounced. 

 



JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.27 OCT 2025 
 

133 
 

TABLE III.  LSTM NETWORK PARAMETERS 
Layer Value/Size 

Input size 10 
Bi-LSTM layer size 100 cells organized in one layer 

Fully connected layer 20 hidden units organized in one 
layer 

Classification Layer Softmax activation function 
Cross-entropy classification layer 

mapped out to 20 outputs 

 
The LSTM training parameters are shown in Table IV. The 

selected training algorithm is Adaptive Moment Estimation 
(ADAM) [49], a mixture of two gradient-based search 
algorithms - momentum stochastic gradient descent and root 
mean square propagation. ADAM improves the traversal of the 
solution space by inheriting the advantages of both algorithms. 
This showed that ADAM approaches is more efficient[50]–
[51]. 
 

TABLE IV.  LSTM TRAINING PARAMETERS 
Training Parameter Value 
Training Algorithm Adaptive Moment 

Estimation (ADAM) 
Execution Environment GPU 

Max. Epoch 1,000 
Mini-batch Size 512 

Gradient Threshold 1 
 

GPU-based training was used to calculate the weight updates, 
capitalizing on their multicore architecture to calculate the 
weights in parallel to accelerate training. The advantages of 
GPU-based computing are well documented in the literature 
[52]–[53]. 

The mini-batch size depends on the GPU memory. A larger 
minibatch increases training speed at the expense of GPU 
memory as it loads more data at each epoch. The optimal 
determination of mini-batch size was performed by 
incrementally increasing the mini-batch size while monitoring 
GPU memory. This process was stopped when the GPU 
memory is loaded on average 80%. We did not increase the 
mini-batch size beyond this to account for potential spikes in 
GPU memory use during training.  

The maximum epochs were set to 1,000 as our initial tests 
confirmed that LSTM performed well above 90% within 
reasonable time using this setting. Finally, the gradient 
threshold was used to adjust the learning rate of the ADAM 
algorithm. It is necessary to control overfitting (where LSTM 
memorizes and performs well on previously seen training data, 
while performing poorly on previously unseen testing data). 
 
4) LSTM Perfomance Analysis 

The confusion matrix (CM) serves as a fundamental tool for 
evaluating the performance of classification networks. For a 
binary classifier, its typical format is a 2x2 matrix, as illustrated 
in Table V [5]. This standard layout allows for the clear 
depiction of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). Each element in this 
2x2 matrix represents the count of instances where the 
classifier's prediction aligns with or deviates from the actual 
class. 

However, in this research, the scope of the confusion matrix 
was significantly expanded to accommodate the complexity of 
the classification task. Recognizing the diversity inherent in 
different dialects and words, the traditional 2x2 format was 
extended into a more comprehensive 20x20 matrix. This 
substantial increase in dimensions directly reflects the creation 
of 20 distinct classification categories. Essentially, the 
clustering process for the data resulted in 20 unique classes, and 
the confusion matrix was designed to provide a granular view 
of the classifier's performance across all these categories. Each 
cell in this 20x20 matrix represents the number of instances 
where an item belonging to a specific true class (row) was 
predicted by the model as belonging to a particular predicted 
class (column). This extended format allows for a detailed 
analysis of misclassifications between all 20 categories, 
offering insights into which dialects or words are most 
frequently confused with others by the classification model. 

 
TABLE V.  CONFUSION MATRIX FORMAT 

 Predicted Class 
 Positive Negative 

Positive True Positive (TP) False Negative (FN) 
Type II Error 

Negative False Positive (FP) 
Type I Error 

True Negative 
(TN) 

 
 The performance evaluation of a Long Short-Term Memory 

(LSTM) recurrent neural network, specifically designed for 
dialect identification, is a multifaceted process that extends 
beyond a singular accuracy score. To provide a robust and 
comprehensive assessment, this study leveraged a suite of 
established classification metrics: accuracy, positive 
predictability (also known as precision), specificity, and 
sensitivity [54]. Each of these metrics offers a distinct lens 
through which to understand the model's effectiveness in 
accurately classifying various dialects, thereby revealing its 
strengths and potential areas for improvement. 

Accuracy serves as the foundational metric, providing an 
overall measure of the classifier's correctness. It represents the 
proportion of all predictions, both positive and negative, that 
the model correctly identified. Formally, the accuracy of the 
classifier is mathematically defined as (8): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(%) =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
× 100% (8) 

 
Precision is the ability of the classifier to correctly identify 

positive cases in (9), while specificity (10) and sensitivity (11) 
describe the performance of the classifier in rejecting false 
classification and accepting true classifications, respectively. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (9) 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (10) 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (11) 

III. RESULT AND DISCUSSION 
A sample compelling illustration of the MFCC features 

extracted from the utterances is shown in Fig. 2 (word: kerbau, 
standard, eastern, and northern dialect, respectively). Visual 
inspection on the entire dataset suggests that MFCC features are 
critical as they condense the complex spectral characteristics of 
speech into a more compact and discernible form, often 
described as the "fingerprint" of an utterance. For example, in 
Fig. 2(a) and Fig. 2(c), the pronunciations appear to have a 
unique steep ridge at the beginning (indicating a hard k sound), 
while the eastern dialect (Fig. 2(b)) is pronounced with a softer 
‘k’ and places more emphasis on the middle part of the word 
indicates a greater emphasis on the middle segment of the word, 
likely corresponding to a more prolonged or stressed vowel 
sound within that portion of the utterance. These observable 
differences in the MFCC plots underscore the capacity of these 
features to visually articulate the phonetic and phonological 
distinctions inherent across various dialects, providing tangible 
evidence of their utility in dialect identification tasks 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Sample pronunciation of the word ‘kerbau’ (a) 
Standard, (b) Eastern, and (c) Northern dialect. 

 
 Each of the pronunciations generated different-sized 

cepstrums as different speakers pronounced the words at 
different speech rates. For example, in Fig. 2 the standard 
pronunciation produced 80 data points, eastern 60 data points, 
and northern 60 data points. The data set needs to be 
standardized using Dynamic Programming (DP) method to 
ensure that the data are equal length. The training and testing 
data set was randomly divided into a 70:30 ratio. The training 
set was used to train the LSTM model, while the testing set was 
reserved to test the model performance on previously unseen 
data.  

The training curve for the LSTM network is shown in Fig. 
3. The accuracy appears to be low during the initial part of the 
training as the weights of the network were randomly initialized 
at the beginning. However, errors were gradually reduced as the 
network weights were updated during training. As shown in 
Table 6, the results show a high percentage of accuracy in all 
pronunciations and words, suggesting that the LSTM was able 
to generalize and perform well in previously seen and unseen 
cases. 

Performance Discrepancies Between Training and Testing 
sets Fig. 4 and 5 visually represent the specificity and sensitivity 
scores obtained from the training and testing sets, respectively. 
In Table VI, the training phase yielded exceptional results, 
demonstrating a perfect 100% across all evaluated metrics: 
precision, accuracy, specificity, and sensitivity. This indicates 
that the model achieved a flawless classification performance 
on the data it was trained on. 

However, because of some minor cases of 
misclassifications, the testing set did not achieve similar results 
to the training set. However, as shown in Table VII, there were 
very few misclassifications suggesting that the model 
maintained a high level of accuracy and generalization ability 
even on new data. 
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Fig. 3. Training progress. 

 

 
Fig. 4. Precision, accuracy, specificity, and sensitivity for 

training set. 

 
    Fig. 5. Precision, accuracy, specificity, and sensitivity 
for testing set. 

TABLE VI.  DIALECT ACCURACIES OF TRAINING AND TESTING SETS FOR DIFFERENT MALAY WORDS 
Dialect Standard Eastern Northern Range (%) Word Train (%) Test (%) Train (%) Test (%) Train (%) Test (%) 

Atas 100 100 100 100 100 100 100 
Awal 100 100 100 99.15 100 99.60 99.15 - 100 

Belajar 100 100 100 100 100 100 100 
Beras 100 100 100 100 100 100 100 
Besar 100 100 100 100 100 100 100 
Biar 100 99.57 100 100 100 100 99.57 - 100 

Buaya 100 100 100 100 100 100 100 
Bungkus 100 99.57 100 100 100 100 99.57 - 100 
Hitam 100 99.57 100 100 100 100 99.57 - 100 
Kakak 100 100 100 99.60 100 99.60 99.60 - 100 
Keluar 100 99.57 100 99.60 100 100 99.57 - 100 
Kerbau 100 100 100 100 100 100 100 
Lapar 100 100 100 100 100 99.60 100 
Lepas 100 100 100 100 100 100 100 
Pahit 100 100 100 100 100 99.60 99.60 - 100 
Saya 100 100 100 99.60 100 100 99.60 - 100 

Tawar 100 100 100 99.60 100 100 99.60 - 100 
Tebal 100 100 100 100 100 100 100 
Tikus 100 100 100 100 100 100 100 
Ular 100 100 100 100 100 100 100 

Range (%) 100 99.57-100 100 99.15-100 100 99.60-100  
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TABLE VII.  ALL MISCLASSIFICATIONS IN TESTING SET 

Dialect Standard Eastern Northern No Misclassifications 
Word Predicted Actual Predicted Actual Predicted Actual  
Atas 12 12 12 12 12 12 0 
Awal 12 12 12 11 12 11 2 

Belajar 12 12 12 12 12 12 0 
Beras 12 12 12 12 12 12 0 
Besar 12 12 12 12 12 12 0 
Biar 12 11 12 12 12 12 1 

Buaya 12 12 12 12 12 12 0 
Bungkus 12 11 12 12 12 12 1 
Hitam 12 11 12 12 12 12 1 
Kakak 12 12 12 11 12 11 2 
Keluar 12 11 12 11 12 12 2 
Kerbau 12 12 12 12 12 12 0 
Lapar 12 12 12 12 12 11 1 
Lepas 12 12 12 12 12 12 0 
Pahit 12 12 12 12 12 11 1 
Saya 12 12 12 11 12 12 1 

Tawar 12 12 12 11 12 12 1 
Tebal 12 12 12 12 12 12 0 
Tikus 12 12 12 12 12 12 0 
Ular 12 12 12 12 12 12 0 

Total Misclassifications 13 

Accuracy (%) = 720−13
720

𝑥𝑥100% = 98.20% 
 

TABLE VIII. Comparison Of Our Method with Similar Recent Papers 
Reference Language Data Application Feature Representation Classification Method Accuracy 

Our 
approach 

Malay Words selected by Malay 
language expert 

Dialect & Word 
recognition 

MFCC Bi-LSTM 98.20% 

Shah et 
al. [16] 

Pashto Isolated digits (number of data 
not mentioned) 

Speaker recognition 
based on dialect and 

accent 

MFCC, prosodic 
features 

Multi-Layer Perceptron, 
Support Vector Machine, 
Hidden Markov Model 

95.0%-
98.0% 

Isik et al. 
[55] 

Turkish Not available. Dialect recognition Prosodic features LSTM 78.7% 

Kadiri et 
al. [15] 

German 
and 

English 

STYRIALECT database 
(German) and UT-Podcast 

(United Kingdom, Australian 
and United States) 

Dialect recognition Zero-Time 
Windowing Cepstral 

Coefficients 
(ZTWCC) 

SVM, Multiclass Logistic 
Regression, Gaussian Linear 

Classifier. 

47.5% 
(German
) - 78.0% 
(English) 

Mousa 
[14] 

Arabic Arabic Online Commentary 
dataset (106,000+) 

Dialect recognition Raw audio RNN, LSTM, bi-LSTM 80.2% - 
85.9% 

Lee et al. 
[13] 

Korean Korean Standard Speech 
Database, National Institute of 

Korean Language Database 

Dialect recognition MFCC LSTM 68.51% 

A comparison with recent methods is shown in Table VIII. 
Compared to other approaches using LSTM and MFCC, our 
method scored a competitive 98.20% testing accuracy. Of 
course, the results do not consider the complexity of the 
languages themselves. 

IV. CONCLUSION 
MFCC and Bidirectional LSTM have been demonstrated as 

powerful methods to classify Malay language dialects. The 
proposed implementation does not require a particularly 
complex structure, yet it has been proven that a single-layer 
bidirectional LSTM network is sufficient to achieve 98.20% 
accuracy. The performance is commendable, with high 
accuracy, specificity, and sensitivity for all utterances. These 
results collectively highlight the robust and practical 
applicability of the MFCC-Bi-LSTM framework for this 
challenging linguistic task. 
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