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Abstract— The Malay language is a major language in the
Austronesian family and is commonly spoken in various parts in
Southeast Asia (SEA). Despite its many native speakers, research
on intelligent techniques to analyse the language has been limited.
In this paper, we present a Long Short-Term Memory (LSTM) to
perform dialect recognition for the Malay Language. 240 samples
were collected from 10 native dialect speakers to perform the
experiments. Subsequently, we represented the raw audio
recordings as Mel Frequency Cepstrum Coefficient (MFCC)
features to train the LSTM classifier. The results achieved 98.20%
classification accuracy, comparable to similar current methods.

Index Terms— Malay language, dialect classification, Long Short-
Term Memory (LSTM) Neural Network, Mel Frequency Cepstral
Coefficient (MFCC).

I. INTRODUCTION

Austronesian languages are widely spoken in Southeast Asia
spoken by approximately 386 million people. The Malay
(/ma'ler/ /[1]; Bahasa Melayu, s>« (sl¢) language is a major
language in Austronesian family, and is commonly spoken in
South East Asia (SEA) such as Malaysia, Indonesia, Singapore,
Brunei, and parts of Thailand [2], [3], [4], [S]. The language
consists of 36 phonemes, consisting of 27 consonants, three
diphthongs and six vowels [6], [7] structured into seven types
of words syllables [7]. Malay is the primary spoken language
in Malaysia and Indonesia with 290 million native speakers
located across coast of the Malaysia, eastern coast of Sumatra
in Indonesia, Sabah, Sarawak and across the Strait of Malacca
[8], [9]. The standard Malay Language has various official
names as the national language for several countries in SEA.
Malaysia with an estimated population of 32.4 million people
[10] use Malay as the official language.
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However, with geographical diversity, the language is
spoken in different dialects across the country [11]. Although
English is commonly spoken, the number of people that can
communicate fluently with the language is limited, especially
in rural areas [9].

In speech recognition, however, most of deep learning
technology that has been implemented focused on English and
Chinese speech recognition [12]. Despite much research being
devoted to dialect recognition (see [13]-[16] for recent papers),
the number of studies focusing on the Malay language is limited
even with the language’s many native speakers and significance
in the SEA region. Additionally, research by [17] discovered
that although there has been some studies on standard Malay
pronunciation, the research for the Malay dialects are still
limited.

Dialect recognition is a subset of Natural Language
Processing (NLP) and speech recognition due to richness of
natural language [18], a branch of Artificial Intelligence (AI)
focused on capturing the semantics of verbal communication. It
is a challenging task [19] as there is limited measurement that
can be used as a standard to differentiate between the variety of
dialects even in same language [20]. However, it is particularly
useful in developing speech recognition applications tailored to
non-English speakers.

Recent advancements in the field of Al have introduced new
techniques for modelling many types of complex data. Among
them, the LSTM model has shown significant potential. The
LSTM is a part of the Deep Learning Neural Network paradigm
[21] introduced in 1997 by Hochreiter and Schmidhuber [22].
The model extends the capability of Recurrent Neural Networks
(RNN) to eliminate the vanishing gradient problem [23]. In
contrast to traditional feedforward multi-layer perceptron
neural network, LSTM has feedback (recurrent) connections.
This structure allows the LSTM store memory from long term
temporal dependencies [24], [25]. Additionally, the LSTM can
process either single data points, or entire sequences of data
depending on its target usage [26]. It can be used in regression
tasks (function approximation and forecasting) [27], as well as
pattern classification tasks (such as image or speech
recognition) [26].

The structure of LSTM consists of cells (nodes) that have the
capability to include or exclude certain parts of the data
sequence using special gates [23], [28]. Therefore, LSTM can
learn to remember or forget the internal resources of the storage
unit (if necessary), it has powerful capabilities in processing
sequential data thereby avoiding the network collapse caused
by the unlimited growth of the state. By having memory inside
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the hidden layer cells, LSTM will have self-connection thereby
allowing it to store their temporary state [29]. Learning is done
by performing forward and backward propagation, where the
input data will cross concentrating on the weight from input to
the output unit [30].

In this paper, we present a Long Short-Term Memory
(LSTM) to perform dialect recognition for the Malay Language.
LSTM is a neural network especially designed to learn and
generalize from long data sequences, such as sound. We
represent the raw audio recordings as Mel Frequency Cepstrum
Coefficient (MFCC) features to train the LSTM classifier. The
reasons for our choice of techniques are:

In [30], LSTM has been shown to outperformed the Hidden
Markov Model (HMM) in Persian phoneme recognition
using the FARSDAT speech database. In [31], LSTM was
shown to outperform Gated Recurrent Unit (GRU),
Recurrent Neural Network (RNN) and Logistic Regression,
respectively. Additionally, LSTM has been shown to
outperform RNN in terms of training speed [32].

MFCC models the human auditory system to represent audio
features [33], [34]. The features, represented as Mel
Cepstrum (MC) are very descriptive and have successfully
been applied in research [35] (see [13], [15], [16], [36]-[38]
for examples). The richness of representation is dependent on
two parameters, namely the number of filter banks and the
number of coefficients.

II. METHODOLOGY

A. Hardware Specification

The entire scope of this research project, encompassing all
phases from initial data preprocessing and algorithm
development through to model training, simulation, and final
results analysis, was comprehensively realized using the
MATLAB software environment, specifically leveraging the
features in MATLAB release 2020a on a computer with
specifications listed in Table 1. The GPU was used to accelerate
network training using its highly parallel graphics processors.

TABLEI. HARDWARE SPECIFICATION
Item Specification
Central Processing Unit (CPU) Intel® Core™ i5-6400 CPU 2.7
GHz
Graphics Processing Unit (GPU) NVIDIA GeForce GTX 1080 Ti
Random Access Memory (RAM) 20GB
Development Environment MATLAB R2020a

B. Experiment Description

Fig. 1 shows the important parts in this paper. There are four
major parts, namely data collection to gather the necessary raw
data. This raw data then undergoes MFCC extraction, a process
that transforms it into meaningful feature sequences capturing
audio characteristics. These sequences are subsequently fed
into an LSTM training phase, where a Long Short-Term
Memory network learns to identify temporal patterns within the
data. Finally, a thorough performance analysis is conducted by
testing the trained LSTM model on unseen data, using metrics
like accuracy to evaluate its effectiveness and reliability.
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Fig. 1. Experiment flowchart
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1) Data Collection

Ten subjects (native Malay dialect speakers, five male and
five female) were required to utter 20 different words (Table 2)
ten times each. The subjects’ age range was 25 to 35 years old
to ensure clear and fluent pronunciation of their respective
dialects. Additionally, an interview was conducted to collect
information on the region in which they were born and how
long they have lived in the region.

The selected words were validated by our language expert,
Mrs. Zuraidah Jantan, a Malay language researcher from the
Academy of Language Studies, Universiti Teknologi MARA,
Malaysia. The expert examined the phonetics of the words to
ensure that the dialects can be differentiated. The language
expert also translated the words to the International Phonetic
Association (IPA) Standard Transcription.

The recording process was done inside a silent room without
any outside disturbance. The device used for recording is the
SONY ICD-UXS560F Digital Voice Recorder in MP3/LPCM
format file with a high-sensitivity Stereo-Microphone and noise
cut function available with low cut filter. The recording
sampling rate was set to 44.1 kHz.

TABLE II. 'WORDS USED FOR DATASET COLLECTION

IPA IPA IPA
Standard Easter Eastern Norther Northern
Standard e e L
Transcripti n Transcripti n Transcripti
on on on
Saya [saya] Sayo [sayD] Saya [saya]
Besar [basar] Besa [basa] Besaq [basal]
Keluar [kaluar] Kelua [kalua] Keluaq [kalua$]
Tikus [tikus] tikuh [tikuh] tikuyh [tikujh]
Beras [baras] berah [baxah] berah [baxah]
Tebal [tabal] teba [taba] tebaiyh [tabaj]
Awal [Pawal] awa [awa] awai [awaj]
Biar [biar] Bia [bila] biaq [bia$]
Atas [atas] atah [atah] atah [atah]
Belajar [balajar] belaja [balaja] belajaq [balajal]
Bungkus  [bungkus]  bukuh [bukuh] bu;szu [buykujh]
Lapar [lapar] lapa [lapa] lapaq [lapa$]
Tawar [tawar] tawa [tawa] tawaq [tawaS]
Ular [ular] Ula [ula] ulaq [ula$]
Kerbau [karbau] Kuba [kuba] kebaw [kabaw]
Kakak — [kaka?] K‘,’{“ [kakD?]  kakag ~ [kaka?]
Buaya [buaja] boyo [bDjO] boya [bDja]
Hitam [hitam] Hite (it itam [itam]
Pahit [pahit] pahik [pahi?] payt [pajt]
Lepas [lapas] lepah [lepah] lepah [lopah]
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2) MFCC Feature Extraction

Five important steps exist in MFCC: framing & windowing,
Fast Fourier Transform (FFT), Mel Frequency (MF) Shifting,
Logarithm, and Discrete Cosine Transform (DCT). They are
described in the following paragraphs.

The first step in MFCC is to represent it in a lower dimension
by a process called framing to simplify analysis. The structure
divides the signal into low-dimension time intervals [39]. The
typical frame size (sampling window) used is typically 25
milliseconds [40]. To align with this sampling window, the
frame size adopted in this study is approximately 20 to 40
milliseconds. The framing process creates discontinuities at the
beginning and end of each frame. Windowing was applied to
the frames to reduce the discontinuity effect. This was done by
applying a Hamming window at the beginning and end of the
frames to create a smoother transition between them [41].
Subsequently, FFT was applied to convert the time series
frames into the frequency domain.

MFCC is a feature representation method that mimics human
auditory characteristics. There are two parameters that
influence the extraction features for MFCC, namely the number
of bandpass filter banks and the default number of coefficients
for yielding the best performance [42][43]. The number of
coefficients is 12 since the magnitude for coefficient is smaller
than this value. The method is particularly sensitive to these
parameters, as they control the richness of the feature
representation, which consequently affects the accuracy of the
classifier model (in this case, LSTM). Mel Frequency Banks are
special filters responsible for capturing information from the
frames in (1).

mel(f) = 2,595 [ln (1+ %)] (1)

where f is the sampling frequency.

Subsequently, the Discrete Cosine Transform (DCT)
converts the frequency representation back to normal form
using (2).

u mn(m — l)
c(n) = Z Y(m)cos[sz (2)
m=1

where c¢(n) stands for the MFCC, m is the number of
coefficients, and N is the number of triangular bandpass filters.
M is the sum of the cepstrum coefficients of the Mel scale, and
Y (m) is the multiplication result in the conjugate spectrum. As
a result of the MFCC processing, the signal segment is
multiplied by the Hamming window, in which the width of 25
ms and the subsequent frame overlap by 50%, and FFT is
applied to each frame. If the filter bank between 20 and 40
triangular filters is used, and only 10-20 coefficients are
calculated from the filter bank. Each data point produces three-
dimensional feature points. These feature points were then
rearranged as column vectors into a large feature matrix used to
train the LSTM [44]. To fit into the LSTM’s network structure,
the optimal dimension was determined to be ten.

3) LSTM Training

The LSTM neural network was used to classify the dialects.
LSTM consists of memory-capable cells that can remember
values over arbitrary time intervals. Each cell contains three
major elements, namely the input, output and forget gates that
regulate information flow into and out of the cell (Fig. 2) [23],
[45], [46]. The cell holds the memory of the LSTM and is
responsible for observing the trail of needs between the
elements in the input sequence, which to an extent can decide
on the new value flowing into the cell. Then the forget gate will
decide to what extent the value is maintained in the cell and the
output gate controls to what extent the value cell is used to
compute the output activation of LSTM [47]. The number of
cells is an adjustable LSTM parameter. Typically, it is
optimally configured to minimize network error. We set the
number of cells to 100 in our experiments.

@Outpul
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Next hidden state
Hidden state
X: ) Input

Fig. 2. LSTM cell structure [48].

By examining the structure given in Fig. 2, where X = (x4,
Xy,, ..., Xy and x, € RY) denotes the input sequence, the input
(iy), forget (f;) and output (o;) gates’ operations are
mathematically shown by (3) to (5), respectively [23].

i, = J(Wixt + Viht_l + bi) 3)
fe= U(fot + tht—l + bf) 4)
0, =0(W°x; +V°h,_4 + b°) %)

The cell state (c;) and hidden state (h;) are each described
by (6) and (7).

¢ =fi Ociq +i; © tanh WEx, + VCh,_1 + b°) (6)
hy = o, © tanh (c;) (7

where Wi W/ WO W€ R%and VIV/ Ve Ve ¢ R¥? are
trained matrices. b%,b’ ,b° b€ are trained biases. d is the hidden
layer size of LSTM. o denotes sigmoid function and © denotes
element-wise multiplication.

The layers parameters for constructing the LSTM network
are shown in Table III. The LSTM networks was trained using
MFCC features for recorded voices as input features.
Bidirectional LSTM cells are needed for the network to learn
from the complete time series at each time step. The
classification layer outputs the Malay dialect and the word
pronounced.
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TABLE III. LSTM NETWORK PARAMETERS
Layer Value/Size
Input size 10

Bi-LSTM layer size
Fully connected layer

100 cells organized in one layer
20 hidden units organized in one
layer
Softmax activation function
Cross-entropy classification layer
mapped out to 20 outputs

Classification Layer

The LSTM training parameters are shown in Table IV. The
selected training algorithm is Adaptive Moment Estimation
(ADAM) [49], a mixture of two gradient-based search
algorithms - momentum stochastic gradient descent and root
mean square propagation. ADAM improves the traversal of the
solution space by inheriting the advantages of both algorithms.
This showed that ADAM approaches is more efficient[50]—
[51].

TABLEIV.  LSTM TRAINING PARAMETERS

Training Parameter Value

Training Algorithm Adaptive Moment

Estimation (ADAM)
Execution Environment GPU
Max. Epoch 1,000
Mini-batch Size 512
Gradient Threshold 1

GPU-based training was used to calculate the weight updates,
capitalizing on their multicore architecture to calculate the
weights in parallel to accelerate training. The advantages of
GPU-based computing are well documented in the literature
[52]-[53].

The mini-batch size depends on the GPU memory. A larger
minibatch increases training speed at the expense of GPU
memory as it loads more data at each epoch. The optimal
determination of mini-batch size was performed by
incrementally increasing the mini-batch size while monitoring
GPU memory. This process was stopped when the GPU
memory is loaded on average 80%. We did not increase the
mini-batch size beyond this to account for potential spikes in
GPU memory use during training.

The maximum epochs were set to 1,000 as our initial tests
confirmed that LSTM performed well above 90% within
reasonable time using this setting. Finally, the gradient
threshold was used to adjust the learning rate of the ADAM
algorithm. It is necessary to control overfitting (where LSTM
memorizes and performs well on previously seen training data,
while performing poorly on previously unseen testing data).

4) LSTM Perfomance Analysis

The confusion matrix (CM) serves as a fundamental tool for
evaluating the performance of classification networks. For a
binary classifier, its typical format is a 2x2 matrix, as illustrated
in Table V [5]. This standard layout allows for the clear
depiction of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). Each element in this
2x2 matrix represents the count of instances where the
classifier's prediction aligns with or deviates from the actual
class.
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However, in this research, the scope of the confusion matrix
was significantly expanded to accommodate the complexity of
the classification task. Recognizing the diversity inherent in
different dialects and words, the traditional 2x2 format was
extended into a more comprehensive 20x20 matrix. This
substantial increase in dimensions directly reflects the creation
of 20 distinct classification categories. Essentially, the
clustering process for the data resulted in 20 unique classes, and
the confusion matrix was designed to provide a granular view
of the classifier's performance across all these categories. Each
cell in this 20x20 matrix represents the number of instances
where an item belonging to a specific true class (row) was
predicted by the model as belonging to a particular predicted
class (column). This extended format allows for a detailed
analysis of misclassifications between all 20 categories,
offering insights into which dialects or words are most
frequently confused with others by the classification model.

TABLE V. CONFUSION MATRIX FORMAT
Predicted Class
Positive Negative
" .. False Negative (FN)
Positive True Positive (TP) Type II Error
Neeative False Positive (FP) True Negative
& Type I Error (TN)

The performance evaluation of a Long Short-Term Memory
(LSTM) recurrent neural network, specifically designed for
dialect identification, is a multifaceted process that extends
beyond a singular accuracy score. To provide a robust and
comprehensive assessment, this study leveraged a suite of
established classification metrics: accuracy, positive
predictability (also known as precision), specificity, and
sensitivity [54]. Each of these metrics offers a distinct lens
through which to understand the model's effectiveness in
accurately classifying various dialects, thereby revealing its
strengths and potential areas for improvement.

Accuracy serves as the foundational metric, providing an
overall measure of the classifier's correctness. It represents the
proportion of all predictions, both positive and negative, that
the model correctly identified. Formally, the accuracy of the
classifier is mathematically defined as (8):

TP+ TN (8)

= X 0,
TP+TN + FP +FN 100%

Accuracy (%)

Precision is the ability of the classifier to correctly identify
positive cases in (9), while specificity (10) and sensitivity (11)
describe the performance of the classifier in rejecting false
classification and accepting true classifications, respectively.

.. TP 9)
Precision = m

e TN (10)
Specificity = TN+ FP
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o rp (1)
Sensitivity = TP+ FN

III. RESULT AND DISCUSSION

A sample compelling illustration of the MFCC features
extracted from the utterances is shown in Fig. 2 (word: kerbau,
standard, eastern, and northern dialect, respectively). Visual
inspection on the entire dataset suggests that MFCC features are
critical as they condense the complex spectral characteristics of
speech into a more compact and discernible form, often
described as the "fingerprint" of an utterance. For example, in
Fig. 2(a) and Fig. 2(c), the pronunciations appear to have a
unique steep ridge at the beginning (indicating a hard k sound),
while the eastern dialect (Fig. 2(b)) is pronounced with a softer
‘k’ and places more emphasis on the middle part of the word
indicates a greater emphasis on the middle segment of the word,
likely corresponding to a more prolonged or stressed vowel
sound within that portion of the utterance. These observable
differences in the MFCC plots underscore the capacity of these
features to visually articulate the phonetic and phonological
distinctions inherent across various dialects, providing tangible
evidence of their utility in dialect identification tasks

Magnitudes

Magnitudes

Magnitudes

(c)

Fig. 2. Sample pronunciation of the word ‘kerbau’ (a)
Standard, (b) Eastern, and (c) Northern dialect.

Each of the pronunciations generated different-sized
cepstrums as different speakers pronounced the words at
different speech rates. For example, in Fig. 2 the standard
pronunciation produced 80 data points, eastern 60 data points,
and northern 60 data points. The data set needs to be
standardized using Dynamic Programming (DP) method to
ensure that the data are equal length. The training and testing
data set was randomly divided into a 70:30 ratio. The training
set was used to train the LSTM model, while the testing set was
reserved to test the model performance on previously unseen
data.

The training curve for the LSTM network is shown in Fig.
3. The accuracy appears to be low during the initial part of the
training as the weights of the network were randomly initialized
at the beginning. However, errors were gradually reduced as the
network weights were updated during training. As shown in
Table 6, the results show a high percentage of accuracy in all
pronunciations and words, suggesting that the LSTM was able
to generalize and perform well in previously seen and unseen
cases.

Performance Discrepancies Between Training and Testing
sets Fig. 4 and 5 visually represent the specificity and sensitivity
scores obtained from the training and testing sets, respectively.
In Table VI, the training phase yielded exceptional results,
demonstrating a perfect 100% across all evaluated metrics:
precision, accuracy, specificity, and sensitivity. This indicates
that the model achieved a flawless classification performance
on the data it was trained on.

However, because of some minor cases of
misclassifications, the testing set did not achieve similar results
to the training set. However, as shown in Table VII, there were
very few misclassifications suggesting that the model
maintained a high level of accuracy and generalization ability
even on new data.
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Fig. 3. Training progress.
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standard east north standard east north
M Precision M Accuracy m Specificity M Sensitivity ® Precision M Accuracy = Specificity M Sensitivity
Fig. 4. Precision, accuracy, specificity, and sensitivity for Fig. 5. Precision, accuracy, specificity, and sensitivity
training set. for testing set.
TABLE VI. DIALECT ACCURACIES OF TRAINING AND TESTING SETS FOR DIFFERENT MALAY WORDS
Dialect Standard Eastern Northern Range (%)
Word Train (%) Test (%) Train (%) Test (%) Train (%) Test (%) ge
Atas 100 100 100 100 100 100 100
Awal 100 100 100 99.15 100 99.60 99.15 - 100
Belajar 100 100 100 100 100 100 100
Beras 100 100 100 100 100 100 100
Besar 100 100 100 100 100 100 100
Biar 100 99.57 100 100 100 100 99.57 - 100
Buaya 100 100 100 100 100 100 100
Bungkus 100 99.57 100 100 100 100 99.57 - 100
Hitam 100 99.57 100 100 100 100 99.57 - 100
Kakak 100 100 100 99.60 100 99.60 99.60 - 100
Keluar 100 99.57 100 99.60 100 100 99.57 - 100
Kerbau 100 100 100 100 100 100 100
Lapar 100 100 100 100 100 99.60 100
Lepas 100 100 100 100 100 100 100
Pahit 100 100 100 100 100 99.60 99.60 - 100
Saya 100 100 100 99.60 100 100 99.60 - 100
Tawar 100 100 100 99.60 100 100 99.60 - 100
Tebal 100 100 100 100 100 100 100
Tikus 100 100 100 100 100 100 100
Ular 100 100 100 100 100 100 100
Range (%) 100 99.57-100 100 99.15-100 100 99.60-100
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TABLE VII. ALL MISCLASSIFICATIONS IN TESTING SET

Dialect Standard Eastern Northern No Misclassifications
Word Predicted Actual Predicted Actual Predicted Actual
Atas 12 12 12 12 12 12 0
Awal 12 12 12 11 12 11 2
Belajar 12 12 12 12 12 12 0
Beras 12 12 12 12 12 12 0
Besar 12 12 12 12 12 12 0
Biar 12 11 12 12 12 12 1
Buaya 12 12 12 12 12 12 0
Bungkus 12 11 12 12 12 12 1
Hitam 12 11 12 12 12 12 1
Kakak 12 12 12 11 12 11 2
Keluar 12 11 12 11 12 12 2
Kerbau 12 12 12 12 12 12 0
Lapar 12 12 12 12 12 11 1
Lepas 12 12 12 12 12 12 0
Pahit 12 12 12 12 12 11 1
Saya 12 12 12 11 12 12 1
Tawar 12 12 12 11 12 12 1
Tebal 12 12 12 12 12 12 0
Tikus 12 12 12 12 12 12 0
Ular 12 12 12 12 12 12 0
Total Misclassifications 13
=22 ¥100% = 98.20%
Accuracy (%) 720 0 ) 0
TABLE VIIIL Comparison Of Our Method with Similar Recent Papers
Reference Language Data Application Feature Representation Classification Method Accuracy
Our Malay Words selected by Malay Dialect & Word MEFCC Bi-LSTM 98.20%
approach language expert recognition
Shah et Pashto Isolated digits (number of data Speaker recognition MFCC, prosodic Multi-Layer Perceptron, 95.0%-
al. [16] not mentioned) based on dialect and features Support Vector Machine, 98.0%
accent Hidden Markov Model
Isik et al. Turkish Not available. Dialect recognition Prosodic features LSTM 78.7%
[55]
Kadiri et German STYRIALECT database Dialect recognition Zero-Time SVM, Multiclass Logistic 47.5%
al. [15] and (German) and UT-Podcast Windowing Cepstral Regression, Gaussian Linear ~ (German
English (United Kingdom, Australian Coefficients Classifier. ) - 78.0%
and United States) (ZTWCC) (English)
Mousa Arabic Arabic Online Commentary Dialect recognition Raw audio RNN, LSTM, bi-LSTM 80.2% -
[14] dataset (106,000+) 85.9%
Lee et al. Korean Korean Standard Speech Dialect recognition MEFCC LST™M 68.51%
[13] Database, National Institute of

Korean Language Database

A comparison with recent methods is shown in Table VIIL
Compared to other approaches using LSTM and MFCC, our
method scored a competitive 98.20% testing accuracy. Of
course, the results do not consider the complexity of the
languages themselves.

IV. CONCLUSION

MFCC and Bidirectional LSTM have been demonstrated as
powerful methods to classify Malay language dialects. The
proposed implementation does not require a particularly
complex structure, yet it has been proven that a single-layer
bidirectional LSTM network is sufficient to achieve 98.20%
accuracy. The performance is commendable, with high
accuracy, specificity, and sensitivity for all utterances. These
results collectively highlight the robust and practical
applicability of the MFCC-Bi-LSTM framework for this
challenging linguistic task.
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