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Abstract— Effectively predicting student academic 
performance is a critical challenge in engineering education, 
where enhancing the performance and generalization of machine 
learning models can significantly aid early intervention strategies, 
which are crucial for engineering students as they help identify 
and support those at risk of falling behind, ensuring better 
academic outcomes and retention in the challenging field. This 
study investigates the impact of different optimization algorithms 
on Multi-Layer Perceptron (MLP) models for student 
performance forecasting, utilizing a dataset of 99 student samples. 
Recursive Feature Elimination (RFE) was employed to select the 
most salient features, thereby reducing model complexity. Five 
optimizers, AdamW, AdaGrad, AmsGrad, Nadam, and SGD with 
Momentum were evaluated to assess their influence on 
convergence speed, stability, and generalization. Performance was 
gauged by the number of epochs for convergence and key metrics 
including accuracy, precision, recall, and F1-score. AdamW and 
Nadam demonstrated superior overall performance, converging 
rapidly with stable results. AdamW achieved the highest F1-score 
(86.95%), while both AdamW and Nadam attained the highest 
testing accuracy (80.0%). Conversely, SGD with Momentum 
underperformed, exhibiting signs of underfitting with the lowest 
accuracy (55.0%) and F1-score (47.05%). By combining RFE with 
a careful selection of adaptive optimizers, this research 
underscores a robust methodology for developing MLP models 
capable of effectively analyzing educational data. These findings 
highlight the balance between learning efficiency and predictive 
reliability, supporting data-driven decision-making in education. 
Future research will focus on validating these findings on larger 
datasets and exploring the impact of optimizer choice on fairness 
metrics in educational predictions. 
 
Index Terms— Academic performance forecasting, engineering 
education, Multi-Layer Perceptron (MLP), Recursive Feature 
Elimination (RPE). 

I. INTRODUCTION 
 Education is the cornerstone of societal progress, 

encompassing the acquisition of knowledge, skills, values, and 
beliefs essential for individual growth and collective 
development. It fosters critical thinking, problem-solving 
abilities, and adaptability, preparing individuals to contribute 

meaningfully to society and navigate an increasingly complex 
world. This process spans various levels, from primary 
schooling to higher education and lifelong learning, aiming to 
cultivate well-rounded individuals capable of innovation and 
informed decision-making. 

Engineering education specifically focuses on applying 
scientific and mathematical principles to design, build, and 
maintain structures, machines, systems, and processes. It 
requires rigorous training in analytical skills, technical 
expertise, and practical application, emphasizing creativity and 
ethical considerations. Engineering education prepares 
individuals to tackle complex challenges in various fields, 
contributing to technological advancements and infrastructure 
development that underpin modern society. 

Student forecasting plays a vital role in optimizing 
educational outcomes by predicting academic performance and 
identifying students at risk of falling behind. Utilizing machine 
learning models, data analytics, and various assessment 
metrics, forecasting enables educators to intervene early, 
provide personalized support, and enhance learning strategies. 
By predicting student outcomes, educational institutions can 
make data-driven decisions, tailor resources effectively, and 
improve overall academic retention and success, particularly in 
demanding fields like engineering education. 

Machine learning (ML) has substantially advanced the 
capabilities of classification models, particularly in the domain 
of academic performance prediction. Artificial Neural 
Networks (ANN), and specifically Multilayer Perceptrons 
(MLP), are extensively utilized due to their proficiency in 
learning complex, non-linear patterns inherent in student data 
[1], [2]. However, achieving optimal model performance is 
contingent upon several factors, including meticulous feature 
selection, the choice of optimization algorithm, and appropriate 
evaluation metrics.  

The efficacy of MLP classifiers is profoundly influenced by 
the optimization algorithm used during training, which dictates 
convergence speed, stability during training, and the model's 
ability to generalize to unseen data. While various optimizers 
exist, a comparative analysis of their performance, particularly 
newer adaptive optimizers like AdamW and Nadam, in 
conjunction with RFE for student academic performance 
prediction using MLP, has not been extensively explored, 
especially concerning convergence stability and generalization 
on smaller, focused datasets.  

This study aims to fill this gap by systematically evaluating 
five prominent optimization algorithms: AdamW, AdaGrad, 
AmsGrad, Nadam, and SGD with Momentum. These 
optimizers were selected to represent different families of 
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optimization strategies, including those with adaptive learning 
rates (AdamW, AdaGrad, AmsGrad, Nadam) and momentum-
based approaches (SGD with Momentum), some of which are 
newer and whose specific impact in this educational 
contextwarrants investigation. We analyze their impact on 
convergence speed and stability to determine the most effective 
optimization strategy for MLP models trained on RFE-selected 
features. The subsequent sections will review existing literature 
on classification models, feature selection, optimization 
techniques, and evaluation metrics, leading to the methodology 
employed for assessing optimizer performance and a discussion 
of the findings. Additionally, Recursive Feature Elimination 
(RFE) was employed to enhance model efficiency and 
predictive power by identifying and selecting the most relevant 
features, thereby improving accuracy while mitigating 
computational overhead [3], [4]. 

The remainder of this paper is organized as follows. Section 
I, presents an overview of related works, followed by the 
methodology (Section II). Next, results and discussions are 
presented in Section III. Finally, concluding remarks and future 
works are presented in Section IV. 

A. Related Work 
The development of effective predictive models for student 

academic performance hinges on a synergistic interplay of the 
classification algorithm, feature selection methodology, 
optimization strategy, and rigorous performance evaluation. 
MLPs have gained prominence in this area due to their 
robustness and capacity for complex data modeling [4], [5]. 
However, feature selection remains a critical precursor for 
enhancing model efficiency, with RFE recognized as an 
effective method for dimensionality reduction [4], [6]. 
Concurrently, the choice of optimization algorithm 
significantly shapes the learning dynamics of MLP models. 
Evaluating their impact systematically is therefore essential. 

B. ANN and MLP for classifier 
The Multilayer Perceptron, a specific architecture of 

Artificial Neural Networks, has emerged as a significant 
methodology in classification tasks due to its ability to model 
complex, non-linear relationships within data. MLPs consist of 
multiple layers of input, hidden, and output, facilitating better 
feature learning and generalization across varied applications, 
including classifier and prediction model [7], [8]. Multiple 
research projects have shown the effectiveness of MLPs in 
multidiscipline field, showcasing their adaptability and 
efficiency in processing non-linear datasets. 

Balancing the trade-offs between model complexity, training 
efficiency, and accurate performance continues to be a pivotal 
area of investigation, aimed at harnessing the full potential of 
MLPs in real-world applications [9], [10], [11]. 

C. RFE Feature Selection & Optimizer Algorithm 
Recursive Feature Elimination has emerged as a powerful 

feature selection technique in machine learning due to its ability 
to improve model performance by systematically removing the 
least important features, thus streamlining the modeling 
process. This methodology not only enhances computational 

efficiency but also reduces overfitting, which is crucial in high-
dimensional datasets [12], [13]. RFE relies on a classifier to 
rank features based on their importance, allowing researchers to 
identify and retain the most significant variables while 
discarding irrelevant ones [14]. Such iterative feature selection 
has shown beneficial results across various applications, 
including medical imaging and bioinformatics, where clarity of 
data is paramount for accurate predictions [15].  

In parallel with advanced feature selection methods like 
RFE, the choice of optimization algorithms is fundamental in 
enhancing the convergence of training processes for machine 
learning models. Optimizers like AdamW, AdaGrad, AmsGrad, 
Nadam, and SGD with Momentum each have unique 
advantages that cater to different aspects of optimization. For 
instance, AdamW and Nadam are known for their effective 
handling of sparse gradients and adaptive learning rates, which 
are beneficial in tasks involving large datasets with varied 
feature scales [16], [17]. Meanwhile, AdaGrad excels in 
adapting the learning rate to the parameters, ensuring that 
infrequently updated features receive larger updates, thus 
promoting better learning in scenarios with numerous features 
[18]. The AmsGrad variant addresses some limitations of the 
original Adam optimizer, providing more stable convergence 
properties in certain scenarios [19]. 

The combination of RFE for feature selection and robust 
optimizers is pivotal in achieving high-performance models. 
While RFE focuses on refining input variables, the optimizers 
facilitate efficient learning from the selected features, ensuring 
that the models are not only precise but also practical for real-
world applications [19]. By leveraging these techniques, 
researchers can improve model interpretability and 
generalization, which are fundamental for tasks like disease 
diagnosis and environmental monitoring where understanding 
the underlying features is as critical as predictive accuracy[11]. 

D. Evaluation Metrics for Predictive Model performance 
evaluation 

When evaluating predictive models, particularly those MLP 
architectures, performance metrics such as accuracy, precision, 
recall, and F1-score play a crucial role. These metrics provide 
essential insights, especially in scenarios involving a wide 
range of class distributions, which are common in real-world 
applications [8]. Accuracy, defined as the proportion of 
correctly classified instances out of the total instances, offers a 
general performance assessment; however, relying solely on 
accuracy can be misleading in cases of class imbalance, as it 
may fail to reflect the model’s effectiveness in predicting 
minority class instances [10].  

To gain a deeper understanding of model performance, 
precision and recall are often analyzed. Precision measures the 
proportion of true positives among all predicted positives, 
indicating the reliability of positive class predictions [10], [20]. 
In contrast, recall (sensitivity) assesses the model’s ability to 
correctly identify all relevant instances, expressed as the ratio 
of true positives to the total number of actual positives. High 
recall is particularly important in applications where identifying 
all positive cases is prioritized, even at the expense of precision, 
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such as in medical diagnostics or fraud detection [21]. This 
emphasizes the need for a careful balance between precision 
and recall, contributing to improved model effectiveness by 
ensuring that both false positives and false negatives are 
carefully managed [9]. 

The F1-score serves as a comprehensive performance metric 
by combining precision and recall, making it especially useful 
for imbalanced classification problems [22]. It is particularly 
valuable in cases where the costs of false positives and false 
negatives differ, offering a more balanced evaluation compared 
to accuracy alone. For example, in various application domains 
such as medical diagnostics and fraud detection, researchers 
often emphasize the importance of the F1-score alongside 
accuracy and recall providing a holistic measure of 
classification performance [23]. The trade-offs between 
precision and recall become a focal point for maximizing model 
performance, often requiring that evaluations prioritize these 
metrics to achieve the best practical outcomes in sensitive 
applications [24]. 

E. Convergence Speed and Stability of Optimizers 
The effectiveness of a MLP classifier often hinges on the 

choice of optimization algorithm, impacting both convergence 
speed and training stability [25]. Convergence speed, defined 
as the number of epochs required to achieve an optimal 
solution, and stability, pertaining to the smoothness of loss 
reduction, are crucial for efficient learning progression. 
Momentum-based optimizers like SGD with Momentum 
accelerate training [26], while adaptive optimizers such as 
AdamW, AdaGrad, AmsGrad, and Nadam dynamically adjust 
learning rates to enhance stability throughout the training 
process [27], [28]. Although faster convergence can reduce 
computational costs, it may also lead overfitting, particularly if 
not properly modelled [29]. Conversely, slow-converging 
optimizers like AdaGrad can struggle due to diminishing 
learning rates, often requiring more epochs for effective 
performance[30]. Consequently, evaluating optimizer 
performance should encompass an analysis of learning 
progression, model accuracy, precision, recall, and F1-score, 
ensuring generalization to unseen data [31]. In predictive 
modeling for education, where reliability is critical, selecting an 
optimizer that balances convergence speed and stability is 
essential, as this choice directly influences the overall success 
of MLP classifiers [32]. 

F. AI in Engineering Education: Tools, Methodologies, 
Outcomes, and Challenges 

The integration of Artificial Intelligence (AI) into 
engineering education has emerged as a transformative force, 
offering innovative tools and methodologies to enhance student 
performance, personalize learning experiences, and prepare 
students for the demands of Industry 5.0. This section explores 
the role of AI in predicting student performance, the technical 
methodologies employed, the outcomes and effectiveness of 
these tools, and the challenges and ethical considerations 
associated with their implementation. 

G. AI Tools for Student Performance Prediction 
AI tools have been widely adopted in engineering education 

to predict student academic performance, identify at-risk 
students, and provide personalized learning pathways. These 
tools leverage machine learning algorithms, data mining, and 
natural language processing to analyze student data, such as 
learning processes, participation rates, and summative 
performance, to predict academic outcomes  [1], [2]. For 
instance, evolutionary computation techniques have been used 
to develop prediction models that identify dominant variables 
influencing academic performance, such as knowledge 
acquisition and class participation, while downplaying the role 
of prerequisite knowledge [1]. Similarly, artificial neural 
networks (ANNs) with techniques like the Levenberg–
Marquardt algorithm have been shown to outperform traditional 
machine learning methods in predicting student grades, 
achieving higher accuracy rates [33]. 
 
1) Technical Methodologies 

The technical methodologies underpinning AI tools in 
engineering education are diverse and sophisticated. Machine 
learning algorithms, such as those used in adaptive learning 
systems, enable real-time feedback and early detection of 
learning difficulties  [5]. Data analytics and intelligent tutoring 
systems are employed to tailor educational content and 
optimize curriculum design, ensuring that students receive 
personalized learning experiences  [3], [34]. Additionally, AI-
driven tools such as chatbots, virtual tutors, and interactive 
simulations are increasingly being integrated into engineering 
education to support second language learners (L2) by 
providing personalized feedback and interactive learning 
opportunities [4]. 

 
2) Outcomes and Effectiveness 

The integration of AI tools into engineering education has 
yielded promising outcomes, enhancing student engagement, 
academic performance, and overall learning experiences. 
Studies have shown that AI-enhanced learning environments 
can improve student satisfaction and collaborative learning 
performances, particularly in online engineering courses [2]. 
Moreover, AI tools have been effective in boosting language 
skills, critical thinking, and problem-solving abilities among L2 
learners, resulting in superior learning outcomes [4]. The use of 
AI in predicting student performance has also enabled early 
interventions, helping students at risk of dropping out to 
complete their studies and enhance their future competitiveness  
[6]. 

 
3) Challenges and Ethical Considerations 

Despite the potential of AI in engineering education, several 
challenges and ethical considerations must be addressed. Data 
privacy and algorithmic bias are significant concerns, as AI 
systems rely on vast amounts of student data, which must be 
protected from breaches and misuse [35] . Additionally, the 
over-reliance on AI tools can lead to the assimilation of 
unverified knowledge, emphasizing the need for students to 
critically evaluate AI-generated content [36], [37]. Ethical 
frameworks are essential to ensure that AI integration in 
engineering education is transparent, fair, and aligned with 
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societal values [35]. 

H. Remarks 
The integration of AI into engineering education offers 

significant opportunities for enhancing student performance, 
personalizing learning experiences, and preparing students for 
the demands of Industry 5.0. However, the implementation of 
AI tools must be accompanied by careful consideration of 
ethical issues, data privacy, and the need for human oversight 
to ensure that AI technologies are used judiciously and 
effectively. By addressing these challenges and leveraging the 
potential of AI, engineering education can continue to evolve 
and provide students with the skills and knowledge required to 
succeed in an increasingly complex and technology-driven 
world. 

II. METHODOLOGY 
This study evaluates the impact of different optimizers on 

MLP training, focusing on convergence speed, stability, and 
generalization. The methodology, depicted in Fig. 1, includes 
data collection, preprocessing, model training with various 
optimizers, rigorous evaluation, and comparative analysis. 
 

 
 
Fig 1. Research Methodology Flowchart 

 
 

A. Data Set 
The dataset utilized comprises 99 student samples, each 

characterized by 12 features reflecting academic engagement 
and learning behaviors, with a binary output representing 
academic performance. Features include access to course 
materials, note-taking habits, and tutorial participation (detailed 
in Table I). 

Given the limited sample size (N=99), this study should be 
considered exploratory. The small dataset poses challenges for 
training data-intensive models like MLPs, potentially 
impacting the stability and generalizability of the findings. This 
limitation was a constraint of data availability from a specific 
institutional context. 

TABLE I. 12 FEATURES WITH THE DESCRIPTION 

Feature Number Feature Description 

Feature 1 Access to Lecture Slide and Additional Notes Before 
Lecture 

Feature 2 Access to Lecture Slide and Additional Notes During 
Lecture 

Feature 3 Access to Lecture Slide and Additional Notes After 
Lecture 

Feature 4 Access to Lecture Slide and Additional Notes Outside 
Lecture 

Feature 5 Note Length 

Feature 6 Exercise Before Lecture 

Feature 7 Exercise During Lecture 

Feature 8 Exercise After Lecture 

Feature 9 Exercise Outside Lecture 

Feature 10 Tutorial Correct 3 and above 

Feature 11 Tutorial Answer All Questions 

Feature 12 Tutorial Wrong Before Correct 

 
Recursive Feature Elimination (RFE) was employed for 

feature selection. RFE iteratively trains the model and removes 
the least important features, aiming to find an optimal subset 
that maximizes predictive accuracy while reducing overfitting 
risk. In this study, RFE reduced the initial 12 features to a subset 
of six: Feature1 (Access to Lecture Slide and Additional Notes 
Before Lecture), Feature3 (Access to Lecture Slide and 
Additional Notes After Lecture), Feature7 (Exercise During 
Lecture), Feature8 (Exercise After Lecture), Feature10 
(Tutorial Correct 3 and above), and Feature12 (Tutorial Wrong 
Before Correct). These features intuitively represent proactive 
engagement (Feature1), post-lecture review (Feature3), active 
learning during and after lectures (Feature7, Feature8), and 
mastery in tutorials (Feature10, Feature12), suggesting their 
salience in predicting academic performance. This reduction 
enhances computational efficiency and aims to improve model 
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generalization by focusing on the most informative inputs. 

B. MLP Model and Optimizer Configuration 
A standard MLP architecture was used. The model was 

trained separately with five different optimizers: AdamW, 
AdaGrad, AmsGrad, Nadam, and SGD with Momentum, using 
their standard recommended hyperparameters unless otherwise 
specified. The maximum number of epochs was set to 1,000. 
Early stopping with a patience of 10 epochs (monitoring 
validation loss) was implemented to prevent overfitting and 
reduce unnecessary computation. The batch size was set to 32. 

C. Confusion Matrix & MLP Performance Measurement. 
Model performance was assessed using a confusion matrix 

(Table II) to derive accuracy, precision, recall, and F1-score. 
 

TABLE II.   A 2X2 CONFUSION MATRIX 
 

Actual    
0 TN FP  
1 FN TP  
 0 1 Predicted 

 
The confusion matrix as shown in Table II provides a 

detailed evaluation of classification performance, serving as a 
foundation for the next stage of experimental data analysis in 
MLP performance measurement. The confusion matrix metrics, 
including True Positive (TP), False Positive (FP), True 
Negative (TN), and False Negative (FN), are presented in Table 
II. These values are essential in computing key performance 
indicators such as accuracy, precision, recall, and F1-score, 
which provide insight into the effectiveness of each 
optimization algorithm in distinguishing between different 
classes. 

The accuracy of a classifier is determined by the proportion 
of correctly classified instances relative to the total instances, 
as in (1): 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 
(1) 

 
Precision measures the proportion of correctly predicted 

positive samples out of all predicted positive samples, reflecting 
the classifier’s reliability in correctly identifying positive 
instances as in (2): 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (2) 

 
Recall evaluates the model’s ability to correctly identify 

actual positive instances, representing the proportion of positive 
samples that the model successfully identifies as in (3): 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (3) 

 
The F1-score is a comprehensive evaluation metric that 

balances precision and recall, ensuring the model performs 
effectively across both positive and negative classifications as 

in (4): 
 

𝐹𝐹1 =
2 𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 (4) 

 
Convergence speed was measured by the number of epochs 

required for each optimizer to reach a stable solution (based on 
early stopping criteria) across 20 independent runs. The 
performance metrics (Accuracy, Precision, Recall, F1-Score) 
reported in Tables III and IV were derived from a train-
validation-test split (e.g. 70% train, 15% validation,15% test). 
For more robust estimates, especially with a small dataset, k-
fold cross-validation (e.g., 5-fold or 10-fold) repeated multiple 
times would be advisable for future work or to strengthen these 
findings. 

D. Epochs  
The number of epochs plays a crucial role in training deep 

learning models, as it determines how many times the model 
iterates over the training data to update its parameters. In this 
study, the maximum number of epochs was set to 1000, with an 
early stopping mechanism employed to prevent unnecessary 
computations and mitigate overfitting. Early stopping was 
configured with a patience of 10 epochs, meaning training 
would halt if the validation loss did not improve over 10 
consecutive epochs. This strategy ensures efficient training 
while avoiding excessive cycles that may result in diminishing 
performance returns. A batch size of 32 was selected, balancing 
computational efficiency with stable gradient updates to 
facilitate effective learning. The study evaluates how different 
optimization algorithms influence epoch convergence speed, 
which is a key metric for assessing optimizer efficiency and 
training stability. 

To investigate the impact of optimization strategies on Multi-
Layer Perceptron (MLP) training dynamics, this study analyzes 
the number of epochs required for convergence when using 
features selected by Recursive Feature Elimination (RFE). 
Optimizers that converge in fewer epochs are considered more 
computationally efficient, whereas those requiring a higher 
number of epochs may suggest slower learning or unstable 
updates. Each optimizer’s performance was assessed over 20 
independent runs to ensure robustness and account for 
variability across different training iterations. With the 
methodology established, including RFE-based feature 
selection, optimization strategy evaluation, and convergence 
analysis through epoch measurements are presented in the 
subsequent section presents results and discussion. It offers a 
comparative analysis of optimizer performance in terms of 
convergence speed, stability, and generalization, providing 
insights into selecting the most effective optimizer for 
predictive modelling tasks. 

III. RESULTS AND DISCUSSION 
This section presents the performance evaluation of the five 

optimizers, analyzing training/testing metrics, convergence 
speed, and stability. The discussion considers the bias-variance 
tradeoff, model generalization, and the impact of RFE in the 
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context of a small dataset. 

A. Bias-Variance Tradeoff and Model Generalization 
Table III and Table IV present the training and testing 

performance metrics, respectively, for five optimization 
algorithms: AdamW, AdaGrad, AmsGrad, Nadam, and SGD 
with Momentum. The accuracy drops observed across different 
optimizers indicate varying degrees of overfitting and 
underfitting tendencies. Specifically, AdamW, AmsGrad, and 
SGD with Momentum exhibited significant decreases in 
accuracy between training and testing which are 17.1%, 18.0%, 
and 16.2%, respectively, signaling potential overfitting. In 
contrast, AdaGrad and Nadam showed smaller reductions of 
only 6.9% and 11.3%, respectively, suggesting better 
generalization capabilities. Recall values also displayed 
considerable fluctuation: while AdamW maintained a perfect 
recall of 100% in both training and testing, SGD with 
Momentum suffered a notable decline from 50.0% during 
training to 44.44% in testing, highlighting high bias and an 
inability to capture the data distribution effectively. 

A deeper analysis reveals that AdamW and AmsGrad exhibit 
high-variance behavior, characterized by strong training 
performance but notable deterioration during testing. AdamW 
achieved 97.1% accuracy, 94.1% precision, and 100% recall 
during training, but dropped to 80.0% accuracy, 76.9% 
precision, and maintained 100% recall during testing. Similarly, 
AmsGrad attained 91.3% accuracy and 96.4% precision in 
training, followed by a decrease to 73.3% accuracy and 75.0% 
precision in testing. These patterns are indicative of overfitting, 
where the models memorize the training data at the expense of 
broader generalization. Conversely, SGD with Momentum 
demonstrates underfitting symptoms, achieving low training 
accuracy (71.2%) and precision (82.4%), and deteriorating 
further to 55.0% accuracy and 50.0% precision during testing. 
Its recall also fell from 50.0% to 44.44%, signaling its limited 
ability to learn complex relationships within the data. 

In contrast, AdaGrad and Nadam demonstrated more 
favorable bias-variance tradeoffs. AdaGrad achieved a 
moderate training accuracy of 86.9%, with only a minor 
reduction to 80.0% in testing, while maintaining an F1-Score of 
84.2% across both datasets, indicating strong stability. Nadam 
sustained a high F1-Score of 89.9% in training and 85.7% in 
testing, with precision slightly dropping from 96.4% to 81.8%, 
and recall improving from 84.4% to 90.0%. These results 
suggest that optimizers employing adaptive learning rate 
strategies, such as AdaGrad and Nadam, are better equipped to 
manage model flexibility, thereby mitigating both excessive 
memorization and insufficient pattern learning. To further 
enhance the generalization performance, AdamW and 
AmsGrad would benefit from additional regularization 
techniques such as dropout, L2 regularization, or early 
stopping. For underfitting cases observed in SGD with 
Momentum, strategies such as dynamic learning rate 
adjustment, batch normalization, or increasing model 
complexity are recommended to improve learning capacity. 

In summary, the comparative evaluation highlights that the 
choice of optimizer significantly influences model 

generalization behavior. AdamW and AmsGrad demonstrate 
tendencies toward high variance and overfitting, whereas SGD 
with Momentum exhibits high bias and underfitting. AdaGrad 
and Nadam achieve a better balance between bias and variance, 
with Nadam emerging as the most consistent and reliable 
performer across both training and testing scenarios. These 
findings reinforce the critical importance of aligning optimizer 
selection with the complexity of the dataset and model 
architecture. Effective generalization is not solely dependent on 
the optimizer itself but also requires complementary strategies 
such as regularization or architectural refinement, tailored to 
address either overfitting or underfitting challenges present in 
the learning process. 

TABLE III.   TRAINING PERFORMANCE METRICS OF VARIOUS 
OPTIMIZATION ALGORITHMS (CAPTION: TRAINING PERFORMANCE METRICS 

FOR MLP MODELS USING DIFFERENT OPTIMIZERS ON RFE-SELECTED 
FEATURES) 

Optimizer Accuracy 
(%) 

Precision 
(%) 

 Recall 
(%) 

F1-Score 
(%) 

AdamW 97.1 94.1 100 96.7 
AdaGrad 86.9 96.0 75.0 84.2 
AmsGrad 91.3 96.4 84.4 89.9 
Nadam 91.3 96.4 84.4 89.9 
SDG with 
Momentum 

71.2 82.4 50.0 62.2 

TABLE IV.   TESTING PERFORMANCE METRICS OF VARIOUS OPTIMIZATION 
ALGORITHMS (CAPTION: TESTING PERFORMANCE METRICS FOR MLP MODELS 

USING DIFFERENT OPTIMIZERS ON RFE-SELECTED FEATURES. VALUES 
REPRESENT PERFORMANCE ON THE UNSEEN TEST SET.) 

Optimizer Accuracy 
(%) 

Precision 
(%) 

 Recall 
(%) 

F1-Score 
(%) 

AdamW 80.0 76.9 100 86.95 

AdaGrad 80.0 88.9 80.0 84.2 

AmsGrad 73.3 75.0 90.0 81.8 

Nadam 80.0 81.8 90.0 85.7 

SDG with 
Momentum 

55.0 50.0 44.44 47.05 

 

B. Optimizer Performance Comparison 
The testing results highlight significant performance 

differences across the five optimizers in terms of accuracy, 
precision, recall, and F1-score. AdamW, AdaGrad, and Nadam 
achieve the highest accuracy (80.0%), while AmsGrad follows 
with 73.3%, and SGD with Momentum lags at 55.0%. Precision 
varies significantly, with AdaGrad achieving the highest 
(88.9%) and SGD with Momentum the lowest (50.0%), 
suggesting that AdaGrad maintains a strong ability to correctly 
classify positive instances while SGD with Momentum 
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struggles. Recall is highest for AdamW (100%), followed by 
AmsGrad and Nadam (90.0%), whereas SGD with Momentum 
exhibits the lowest recall (44.44%), indicating a failure to 
correctly capture positive cases. The F1-score follows a similar 
trend, with AdamW (86.95%), Nadam (85.7%), and AdaGrad 
(84.2%) performing the best, while SGD with Momentum 
remains the weakest (47.05%), reinforcing its inability to 
balance precision and recall effectively. 

The results indicate that AdamW is highly recall-focused, 
capturing all positive instances (100%) but at the cost of lower 
precision (76.9%), leading to misclassifications. AdaGrad 
demonstrates the best balance between precision and recall 
(88.9% and 80.0%), making it the most stable in terms of 
classification reliability. AmsGrad performs decently but falls 
short of AdaGrad and Nadam due to its lower precision (75.0%) 
and accuracy (73.3%), suggesting slight overfitting or 
instability in decision-making. Nadam performs similarly to 
AmsGrad but with a higher F1-score (85.7%), making it a 
slightly better choice for consistent generalization. SGD with 
Momentum severely underperforms across all metrics, 
particularly in recall and F1-score, indicating that it struggles to 
learn effectively from the data and may require significant 
tuning or architectural improvements to be viable. 

From these comparisons, AdamW is the best choice when 
prioritizing recall over precision, ensuring that all positive 
instances are identified, making it useful for scenarios where 
false negatives are costly. AdaGrad emerges as the most 
balanced optimizer, with the highest precision and stable recall, 
making it a reliable choice for applications requiring a trade-off 
between correct identification and avoiding misclassifications. 
Nadam is a strong competitor to AdaGrad, slightly favoring 
recall over precision, making it more suitable for cases where 
missing a positive instance is riskier than misclassifying a 
negative one. AmsGrad, while still viable, needs further tuning 
to enhance its precision for better performance. SGD with 
Momentum appears to be the least effective optimizer for this 
dataset, exhibiting weak classification performance overall, 
likely due to suboptimal learning dynamics, and should either 
be fine-tuned or replaced with a more adaptive optimizer. 

C. Optimizer performance on Convergence and Stability using 
RFE as feature selection. 
 

The number of epochs required for convergence varies 
significantly across the five selected optimizers highlighting 
differences in their efficiency and stability. SGD with 
Momentum consistently converges quickly, with epochs mostly 
in the 23 to 105 range, demonstrating its ability to efficiently 
navigate the loss landscape. However, minor variations across 
runs suggest sensitivity to initialization or hyperparameters. 
AdamW, another relatively fast optimizer, maintains a stable 
convergence pattern, typically requiring 11 to 158 epochs, with 
a few outliers where it converged faster than expected (Run 8: 
11 epochs). Nadam and AmsGrad show higher variability, with 
Nadam fluctuating between 21 and 171 epochs and AmsGrad 
ranging from 11 to 145 epochs, indicating occasional instability 
in learning. AdaGrad, in stark contrast, is the slowest optimizer, 
requiring between 19 and 1000 epochs, frequently hitting the 

maximum limit, demonstrating its weakness in long-term 
convergence due to an aggressively decaying learning rate. 

TABLE V.   EPOCHS REQUIRED FOR CONVERGENCE ACROSS 20 RUNS FOR 
SELECTED OPTIMIZERS (CAPTION: EPOCHS TO CONVERGENCE (WITH EARLY 
STOPPING PATIENCE 10 ON VALIDATION LOSS, MAX 1000 EPOCHS) FOR EACH 

OPTIMIZER OVER 20 INDEPENDENT RUNS.) 

Run SDG with 
Momentom 

Adagrad AdamW Nadam AmsGrad 

Run 
1 

66 534 100 39 11 

Run 
2 

23 621 100 91 103 

Run 
3 

32 1000 54 171 84 

Run 
4 

79 386 69 122 75 

Run 
5 

65 205 102 128 23 

Run 
6 

45 488 158 83 100 

Run 
7 

49 815 96 21 92 

Run 
8 

57 1000 11 144 117 

Run 
9 

62 1000 122 45 57 

Run 
10 

105 410 148 77 93 

Run 
11 

57 463 67 107 116 

Run 
12 

26 368 158 127 80 

Run 
13 

52 739 43 60 96 

Run 
14 

65 282 99 117 132 

Run 
15 

46 19 122 26 145 

Run 
16 

69 335 71 105 76 

Run 
17 

84 13 76 85 54 

Run 
18 

84 1000 11 65 82 

Run 
19 

75 966 11 98 11 

Run 
20 

74 132 117 155 96 
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From these results, we can infer that momentum-based 
optimizers (SGD with Momentum and AdamW) perform 
consistently well in terms of convergence speed and stability. 
Momentum allows for faster movement across flat regions, 
reducing the time required for optimization. AdamW’s weight 
decay component prevents excessive parameter updates, 
leading to smooth and controlled convergence. Nadam and 
AmsGrad, while adaptive, display moderate instability, 
possibly due to their reliance on higher-order moment 
estimates, which may amplify noisy gradient updates. The 
extreme slowness of AdaGrad confirms its well-known issue of 
diminishing learning rates, which can prevent the optimizer 
from making meaningful updates in later training stages. The 
fact that AdaGrad often requires 1000 epochs suggests it may 
be unsuitable for models trained on this dataset without 
modifications such as learning rate restarts. 

For practical applications, AdamW and SGD with 
Momentum are the most reliable optimizers, as they balance 
fast convergence and stability without extreme fluctuations in 
required epochs. Nadam and AmsGrad are viable but require 
fine-tuning, particularly with respect to learning rates and batch 
sizes, to prevent oscillations that may slow or destabilize 
learning. AdaGrad, in its current form, is not ideal for this 
dataset, as it converges too slowly, making it computationally 
expensive and inefficient for training deep models. RFE feature 
selection appears to favor optimizers that balance momentum 
and adaptive learning rates, as seen in the strong performance 
of AdamW and SGD with Momentum, while penalizing 
optimizers that rely too heavily on learning rate decay, such as 
AdaGrad. Future research should explore how different 
learning rate schedules affect these optimizers, as techniques 
like cyclical learning rates or warm restarts might mitigate some 
of the instability seen in Nadam and AmsGrad while improving 
the efficiency of AdaGrad. 

D. Limitations of the Study 
The primary limitation of this study is the small dataset size 

(N=99). MLP models are typically data-hungry, and a small 
sample size can lead to: 
 

i. Overfitting: Models may learn idiosyncrasies of 
the training data that do not generalize. This was 
observed with AdamW and AmsGrad. 

ii. Unstable Performance Metrics: Results might be 
sensitive to the specific train/validation/test split. 
While 20 runs were used for epoch convergence, 
the main performance metrics in Tables III and 
IV were based on a single train/validation/test 
split. Employing k-fold cross-validation would 
provide more robust estimates. 

iii. Limited Generalizability: Findings may not 
directly translate to larger, more diverse student 
populations. 

 
Additionally, this study used default or standard 

hyperparameter settings for the optimizers. Extensive 
hyperparameter tuning for each optimizer might yield different 
relative performances. The choice of specific MLP architecture 

also influences results. 
These limitations mean the findings should be interpreted as 

preliminary insights into optimizer behavior on small, RFE-
processed educational datasets. 

IV. CONCLUSION 
This study investigated the impact of five optimization 

algorithms (AdamW, Nadam, AdaGrad, AmsGrad, and SGD 
with Momentum) on the performance of MLP-based student 
classification models, using RFE for feature selection on a 
dataset of 99 students. Key findings indicate that AdamW and 
Nadam offered the best balance of rapid convergence and 
strong predictive performance on unseen data, with AdamW 
achieving the highest F1-score (86.95%) and Nadam showing 
robust generalization (80.0% accuracy, 85.7% F1-score). 
AdaGrad also demonstrated stable, albeit slower, performance. 
Conversely, SGD with Momentum underperformed 
significantly, suggesting underfitting, while AdamW and 
AmsGrad showed signs of overfitting, a risk heightened by the 
small dataset. 

The study highlights that even with dimensionality reduction 
via RFE, optimizer choice significantly influences a model's 
learning efficiency, stability, and generalization. For small 
datasets like the one used, adaptive optimizers such as Nadam 
and AdaGrad appear to offer better generalization than more 
aggressive optimizers if overfitting is a concern. However, the 
primary limitation remains the dataset size, which tempers the 
conclusiveness of these findings. Institutions with similar data 
characteristics might consider Nadam or AdamW for initial 
predictive models but must be mindful of potential overfitting 
and the critical need for validation on larger datasets. 

Future research should prioritize validating these findings on 
larger, more diverse student populations. Exploring techniques 
like k-fold cross-validation for more robust performance 
estimation, systematic hyperparameter optimization for each 
optimizer, and investigating ensemble methods that could 
leverage the distinct strengths of different optimizers are crucial 
next steps to enhance predictive accuracy and reliability in 
educational applications. Further work could also explore the 
impact of these optimizers on fairness and bias in student 
outcome predictions. 
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