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Impact of Optimizer on the MLP-Based Models
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Abstract—  Effectively predicting student academic
performance is a critical challenge in engineering education,
where enhancing the performance and generalization of machine
learning models can significantly aid early intervention strategies,
which are crucial for engineering students as they help identify
and support those at risk of falling behind, ensuring better
academic outcomes and retention in the challenging field. This
study investigates the impact of different optimization algorithms
on Multi-Layer Perceptron (MLP) models for student
performance forecasting, utilizing a dataset of 99 student samples.
Recursive Feature Elimination (RFE) was employed to select the
most salient features, thereby reducing model complexity. Five
optimizers, AdamW, AdaGrad, AmsGrad, Nadam, and SGD with
Momentum were evaluated to assess their influence on
convergence speed, stability, and generalization. Performance was
gauged by the number of epochs for convergence and key metrics
including accuracy, precision, recall, and F1-score. AdamW and
Nadam demonstrated superior overall performance, converging
rapidly with stable results. AdamW achieved the highest F1-score
(86.95%), while both AdamW and Nadam attained the highest
testing accuracy (80.0%). Conversely, SGD with Momentum
underperformed, exhibiting signs of underfitting with the lowest
accuracy (55.0%) and F1-score (47.05%). By combining RFE with
a careful selection of adaptive optimizers, this research
underscores a robust methodology for developing MLP models
capable of effectively analyzing educational data. These findings
highlight the balance between learning efficiency and predictive
reliability, supporting data-driven decision-making in education.
Future research will focus on validating these findings on larger
datasets and exploring the impact of optimizer choice on fairness
metrics in educational predictions.

Index Terms— Academic performance forecasting, engineering
education, Multi-Layer Perceptron (MLP), Recursive Feature
Elimination (RPE).

I. INTRODUCTION

Education is the cornerstone of societal progress,
encompassing the acquisition of knowledge, skills, values, and
beliefs essential for individual growth and collective
development. It fosters critical thinking, problem-solving
abilities, and adaptability, preparing individuals to contribute
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meaningfully to society and navigate an increasingly complex
world. This process spans various levels, from primary
schooling to higher education and lifelong learning, aiming to
cultivate well-rounded individuals capable of innovation and
informed decision-making.

Engineering education specifically focuses on applying
scientific and mathematical principles to design, build, and
maintain structures, machines, systems, and processes. It
requires rigorous training in analytical skills, technical
expertise, and practical application, emphasizing creativity and
ethical considerations. Engineering education prepares
individuals to tackle complex challenges in various fields,
contributing to technological advancements and infrastructure
development that underpin modern society.

Student forecasting plays a vital role in optimizing
educational outcomes by predicting academic performance and
identifying students at risk of falling behind. Utilizing machine
learning models, data analytics, and various assessment
metrics, forecasting enables educators to intervene early,
provide personalized support, and enhance learning strategies.
By predicting student outcomes, educational institutions can
make data-driven decisions, tailor resources effectively, and
improve overall academic retention and success, particularly in
demanding fields like engineering education.

Machine learning (ML) has substantially advanced the
capabilities of classification models, particularly in the domain
of academic performance prediction. Artificial Neural
Networks (ANN), and specifically Multilayer Perceptrons
(MLP), are extensively utilized due to their proficiency in
learning complex, non-linear patterns inherent in student data
[1], [2]. However, achieving optimal model performance is
contingent upon several factors, including meticulous feature
selection, the choice of optimization algorithm, and appropriate
evaluation metrics.

The efficacy of MLP classifiers is profoundly influenced by
the optimization algorithm used during training, which dictates
convergence speed, stability during training, and the model's
ability to generalize to unseen data. While various optimizers
exist, a comparative analysis of their performance, particularly
newer adaptive optimizers like AdamW and Nadam, in
conjunction with RFE for student academic performance
prediction using MLP, has not been extensively explored,
especially concerning convergence stability and generalization
on smaller, focused datasets.

This study aims to fill this gap by systematically evaluating
five prominent optimization algorithms: AdamW, AdaGrad,
AmsGrad, Nadam, and SGD with Momentum. These
optimizers were selected to represent different families of



optimization strategies, including those with adaptive learning
rates (AdamW, AdaGrad, AmsGrad, Nadam) and momentum-
based approaches (SGD with Momentum), some of which are
newer and whose specific impact in this educational
contextwarrants investigation. We analyze their impact on
convergence speed and stability to determine the most effective
optimization strategy for MLP models trained on RFE-selected
features. The subsequent sections will review existing literature
on classification models, feature selection, optimization
techniques, and evaluation metrics, leading to the methodology
employed for assessing optimizer performance and a discussion
of the findings. Additionally, Recursive Feature Elimination
(RFE) was employed to enhance model efficiency and
predictive power by identifying and selecting the most relevant
features, thereby improving accuracy while mitigating
computational overhead [3], [4].

The remainder of this paper is organized as follows. Section
I, presents an overview of related works, followed by the
methodology (Section II). Next, results and discussions are
presented in Section III. Finally, concluding remarks and future
works are presented in Section I'V.

A. Related Work

The development of effective predictive models for student
academic performance hinges on a synergistic interplay of the
classification algorithm, feature selection methodology,
optimization strategy, and rigorous performance evaluation.
MLPs have gained prominence in this area due to their
robustness and capacity for complex data modeling [4], [5].
However, feature selection remains a critical precursor for
enhancing model efficiency, with RFE recognized as an
effective method for dimensionality reduction [4], [6].
Concurrently, the choice of optimization algorithm
significantly shapes the learning dynamics of MLP models.
Evaluating their impact systematically is therefore essential.

B. ANN and MLP for classifier

The Multilayer Perceptron, a specific architecture of
Artificial Neural Networks, has emerged as a significant
methodology in classification tasks due to its ability to model
complex, non-linear relationships within data. MLPs consist of
multiple layers of input, hidden, and output, facilitating better
feature learning and generalization across varied applications,
including classifier and prediction model [7], [8]. Multiple
research projects have shown the effectiveness of MLPs in
multidiscipline field, showcasing their adaptability and
efficiency in processing non-linear datasets.

Balancing the trade-offs between model complexity, training
efficiency, and accurate performance continues to be a pivotal
area of investigation, aimed at harnessing the full potential of
MLPs in real-world applications [9], [10], [11].

C.RFE Feature Selection & Optimizer Algorithm

Recursive Feature Elimination has emerged as a powerful
feature selection technique in machine learning due to its ability
to improve model performance by systematically removing the
least important features, thus streamlining the modeling
process. This methodology not only enhances computational
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efficiency but also reduces overfitting, which is crucial in high-
dimensional datasets [12], [13]. RFE relies on a classifier to
rank features based on their importance, allowing researchers to
identify and retain the most significant variables while
discarding irrelevant ones [14]. Such iterative feature selection
has shown beneficial results across various applications,
including medical imaging and bioinformatics, where clarity of
data is paramount for accurate predictions [15].

In parallel with advanced feature selection methods like
RFE, the choice of optimization algorithms is fundamental in
enhancing the convergence of training processes for machine
learning models. Optimizers like AdamW, AdaGrad, AmsGrad,
Nadam, and SGD with Momentum each have unique
advantages that cater to different aspects of optimization. For
instance, AdamW and Nadam are known for their effective
handling of sparse gradients and adaptive learning rates, which
are beneficial in tasks involving large datasets with varied
feature scales [16], [17]. Meanwhile, AdaGrad excels in
adapting the learning rate to the parameters, ensuring that
infrequently updated features receive larger updates, thus
promoting better learning in scenarios with numerous features
[18]. The AmsGrad variant addresses some limitations of the
original Adam optimizer, providing more stable convergence
properties in certain scenarios [19].

The combination of RFE for feature selection and robust
optimizers is pivotal in achieving high-performance models.
While RFE focuses on refining input variables, the optimizers
facilitate efficient learning from the selected features, ensuring
that the models are not only precise but also practical for real-
world applications [19]. By leveraging these techniques,
researchers can improve model interpretability and
generalization, which are fundamental for tasks like disease
diagnosis and environmental monitoring where understanding
the underlying features is as critical as predictive accuracy[11].

D.Evaluation Metrics for Predictive Model performance
evaluation

When evaluating predictive models, particularly those MLP
architectures, performance metrics such as accuracy, precision,
recall, and F1-score play a crucial role. These metrics provide
essential insights, especially in scenarios involving a wide
range of class distributions, which are common in real-world
applications [8]. Accuracy, defined as the proportion of
correctly classified instances out of the total instances, offers a
general performance assessment; however, relying solely on
accuracy can be misleading in cases of class imbalance, as it
may fail to reflect the model’s effectiveness in predicting
minority class instances [10].

To gain a deeper understanding of model performance,
precision and recall are often analyzed. Precision measures the
proportion of true positives among all predicted positives,
indicating the reliability of positive class predictions [10], [20].
In contrast, recall (sensitivity) assesses the model’s ability to
correctly identify all relevant instances, expressed as the ratio
of true positives to the total number of actual positives. High
recall is particularly important in applications where identifying
all positive cases is prioritized, even at the expense of precision,
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such as in medical diagnostics or fraud detection [21]. This
emphasizes the need for a careful balance between precision
and recall, contributing to improved model effectiveness by
ensuring that both false positives and false negatives are
carefully managed [9].

The F1-score serves as a comprehensive performance metric
by combining precision and recall, making it especially useful
for imbalanced classification problems [22]. It is particularly
valuable in cases where the costs of false positives and false
negatives differ, offering a more balanced evaluation compared
to accuracy alone. For example, in various application domains
such as medical diagnostics and fraud detection, researchers
often emphasize the importance of the Fl-score alongside
accuracy and recall providing a holistic measure of
classification performance [23]. The trade-offs between
precision and recall become a focal point for maximizing model
performance, often requiring that evaluations prioritize these
metrics to achieve the best practical outcomes in sensitive
applications [24].

E. Convergence Speed and Stability of Optimizers

The effectiveness of a MLP classifier often hinges on the
choice of optimization algorithm, impacting both convergence
speed and training stability [25]. Convergence speed, defined
as the number of epochs required to achieve an optimal
solution, and stability, pertaining to the smoothness of loss
reduction, are crucial for efficient learning progression.
Momentum-based optimizers like SGD with Momentum
accelerate training [26], while adaptive optimizers such as
AdamW, AdaGrad, AmsGrad, and Nadam dynamically adjust
learning rates to enhance stability throughout the training
process [27], [28]. Although faster convergence can reduce
computational costs, it may also lead overfitting, particularly if
not properly modelled [29]. Conversely, slow-converging
optimizers like AdaGrad can struggle due to diminishing
learning rates, often requiring more epochs for effective
performance[30].  Consequently, evaluating  optimizer
performance should encompass an analysis of learning
progression, model accuracy, precision, recall, and F1-score,
ensuring generalization to unseen data [31]. In predictive
modeling for education, where reliability is critical, selecting an
optimizer that balances convergence speed and stability is
essential, as this choice directly influences the overall success
of MLP classifiers [32].

F. Al in Engineering Education: Tools,

Outcomes, and Challenges

The integration of Artificial Intelligence (AI) into
engineering education has emerged as a transformative force,
offering innovative tools and methodologies to enhance student
performance, personalize learning experiences, and prepare
students for the demands of Industry 5.0. This section explores
the role of Al in predicting student performance, the technical
methodologies employed, the outcomes and effectiveness of
these tools, and the challenges and ethical considerations
associated with their implementation.

Methodologies,

G.AlI Tools for Student Performance Prediction

Al tools have been widely adopted in engineering education
to predict student academic performance, identify at-risk
students, and provide personalized learning pathways. These
tools leverage machine learning algorithms, data mining, and
natural language processing to analyze student data, such as
learning processes, participation rates, and summative
performance, to predict academic outcomes [1], [2]. For
instance, evolutionary computation techniques have been used
to develop prediction models that identify dominant variables
influencing academic performance, such as knowledge
acquisition and class participation, while downplaying the role
of prerequisite knowledge [1]. Similarly, artificial neural
networks (ANNs) with techniques like the Levenberg—
Marquardt algorithm have been shown to outperform traditional
machine learning methods in predicting student grades,
achieving higher accuracy rates [33].

1) Technical Methodologies

The technical methodologies underpinning Al tools in
engineering education are diverse and sophisticated. Machine
learning algorithms, such as those used in adaptive learning
systems, enable real-time feedback and early detection of
learning difficulties [5]. Data analytics and intelligent tutoring
systems are employed to tailor educational content and
optimize curriculum design, ensuring that students receive
personalized learning experiences [3], [34]. Additionally, Al-
driven tools such as chatbots, virtual tutors, and interactive
simulations are increasingly being integrated into engineering
education to support second language learners (L2) by
providing personalized feedback and interactive learning
opportunities [4].

2) Outcomes and Effectiveness

The integration of Al tools into engineering education has
yielded promising outcomes, enhancing student engagement,
academic performance, and overall learning experiences.
Studies have shown that Al-enhanced learning environments
can improve student satisfaction and collaborative learning
performances, particularly in online engineering courses [2].
Moreover, Al tools have been effective in boosting language
skills, critical thinking, and problem-solving abilities among L2
learners, resulting in superior learning outcomes [4]. The use of
Al in predicting student performance has also enabled early
interventions, helping students at risk of dropping out to
complete their studies and enhance their future competitiveness

[6].

3) Challenges and Ethical Considerations

Despite the potential of Al in engineering education, several
challenges and ethical considerations must be addressed. Data
privacy and algorithmic bias are significant concerns, as Al
systems rely on vast amounts of student data, which must be
protected from breaches and misuse [35] . Additionally, the
over-reliance on Al tools can lead to the assimilation of
unverified knowledge, emphasizing the need for students to
critically evaluate Al-generated content [36], [37]. Ethical
frameworks are essential to ensure that Al integration in
engineering education is transparent, fair, and aligned with
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societal values [35].

H.Remarks

The integration of Al into engineering education offers
significant opportunities for enhancing student performance,
personalizing learning experiences, and preparing students for
the demands of Industry 5.0. However, the implementation of
Al tools must be accompanied by careful consideration of
ethical issues, data privacy, and the need for human oversight
to ensure that Al technologies are used judiciously and
effectively. By addressing these challenges and leveraging the
potential of Al, engineering education can continue to evolve
and provide students with the skills and knowledge required to
succeed in an increasingly complex and technology-driven
world.

II. METHODOLOGY

This study evaluates the impact of different optimizers on
MLP training, focusing on convergence speed, stability, and
generalization. The methodology, depicted in Fig. 1, includes
data collection, preprocessing, model training with various
optimizers, rigorous evaluation, and comparative analysis.
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Fig 1. Research Methodology Flowchart
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A. Data Set

The dataset utilized comprises 99 student samples, each
characterized by 12 features reflecting academic engagement
and learning behaviors, with a binary output representing
academic performance. Features include access to course
materials, note-taking habits, and tutorial participation (detailed
in Table I).

Given the limited sample size (N=99), this study should be
considered exploratory. The small dataset poses challenges for
training data-intensive models like MLPs, potentially
impacting the stability and generalizability of the findings. This
limitation was a constraint of data availability from a specific
institutional context.

TABLE 1. 12 FEATURES WITH THE DESCRIPTION

Feature Number  Feature Description

Feature 1 Access to Lecture Slide and Additional Notes Before
Lecture

Feature 2 Access to Lecture Slide and Additional Notes During
Lecture

Feature 3 Access to Lecture Slide and Additional Notes After
Lecture

Feature 4 Access to Lecture Slide and Additional Notes Outside
Lecture

Feature 5 Note Length

Feature 6 Exercise Before Lecture

Feature 7 Exercise During Lecture

Feature 8 Exercise After Lecture

Feature 9 Exercise Outside Lecture

Feature 10 Tutorial Correct 3 and above

Feature 11 Tutorial Answer All Questions

Feature 12 Tutorial Wrong Before Correct

Recursive Feature Elimination (RFE) was employed for
feature selection. RFE iteratively trains the model and removes
the least important features, aiming to find an optimal subset
that maximizes predictive accuracy while reducing overfitting
risk. In this study, RFE reduced the initial 12 features to a subset
of six: Featurel (Access to Lecture Slide and Additional Notes
Before Lecture), Feature3 (Access to Lecture Slide and
Additional Notes After Lecture), Feature7 (Exercise During
Lecture), Feature8 (Exercise After Lecture), FeaturelQ
(Tutorial Correct 3 and above), and Featurel2 (Tutorial Wrong
Before Correct). These features intuitively represent proactive
engagement (Featurel), post-lecture review (Feature3), active
learning during and after lectures (Feature7, Feature8), and
mastery in tutorials (FeaturelO, Featurel2), suggesting their
salience in predicting academic performance. This reduction
enhances computational efficiency and aims to improve model
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generalization by focusing on the most informative inputs.

B. MLP Model and Optimizer Configuration

A standard MLP architecture was used. The model was
trained separately with five different optimizers: AdamW,
AdaGrad, AmsGrad, Nadam, and SGD with Momentum, using
their standard recommended hyperparameters unless otherwise
specified. The maximum number of epochs was set to 1,000.
Early stopping with a patience of 10 epochs (monitoring
validation loss) was implemented to prevent overfitting and
reduce unnecessary computation. The batch size was set to 32.

C. Confusion Matrix & MLP Performance Measurement.

Model performance was assessed using a confusion matrix
(Table II) to derive accuracy, precision, recall, and F1-score.

TABLE L A 2X2 CONFUSION MATRIX
Actual
0 N FP
1 FN TP
0 1 Predicted

The confusion matrix as shown in Table II provides a
detailed evaluation of classification performance, serving as a
foundation for the next stage of experimental data analysis in
MLP performance measurement. The confusion matrix metrics,
including True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN), are presented in Table
II. These values are essential in computing key performance
indicators such as accuracy, precision, recall, and Fl-score,
which provide insight into the effectiveness of each
optimization algorithm in distinguishing between different
classes.

The accuracy of a classifier is determined by the proportion
of correctly classified instances relative to the total instances,
asin (1):

(TP + TN) 1)
TP +TN + FP + FN

Accuracy =

Precision measures the proportion of correctly predicted
positive samples out of all predicted positive samples, reflecting
the classifier’s reliability in correctly identifying positive
instances as in (2):

Precision = L &)
~ (TP +FP)
Recall evaluates the model’s ability to correctly identify
actual positive instances, representing the proportion of positive
samples that the model successfully identifies as in (3):

Recall = L ®)
~ (TP +FN)

The Fl-score is a comprehensive evaluation metric that
balances precision and recall, ensuring the model performs
effectively across both positive and negative classifications as

in (4):

2TP 4)

= Py FPFFN

Convergence speed was measured by the number of epochs
required for each optimizer to reach a stable solution (based on
early stopping criteria) across 20 independent runs. The
performance metrics (Accuracy, Precision, Recall, F1-Score)
reported in Tables III and IV were derived from a train-
validation-test split (e.g. 70% train, 15% validation,15% test).
For more robust estimates, especially with a small dataset, k-
fold cross-validation (e.g., 5-fold or 10-fold) repeated multiple
times would be advisable for future work or to strengthen these
findings.

D.Epochs

The number of epochs plays a crucial role in training deep
learning models, as it determines how many times the model
iterates over the training data to update its parameters. In this
study, the maximum number of epochs was set to 1000, with an
early stopping mechanism employed to prevent unnecessary
computations and mitigate overfitting. Early stopping was
configured with a patience of 10 epochs, meaning training
would halt if the validation loss did not improve over 10
consecutive epochs. This strategy ensures efficient training
while avoiding excessive cycles that may result in diminishing
performance returns. A batch size of 32 was selected, balancing
computational efficiency with stable gradient updates to
facilitate effective learning. The study evaluates how different
optimization algorithms influence epoch convergence speed,
which is a key metric for assessing optimizer efficiency and
training stability.

To investigate the impact of optimization strategies on Multi-
Layer Perceptron (MLP) training dynamics, this study analyzes
the number of epochs required for convergence when using
features selected by Recursive Feature Elimination (RFE).
Optimizers that converge in fewer epochs are considered more
computationally efficient, whereas those requiring a higher
number of epochs may suggest slower learning or unstable
updates. Each optimizer’s performance was assessed over 20
independent runs to ensure robustness and account for
variability across different training iterations. With the
methodology established, including RFE-based feature
selection, optimization strategy evaluation, and convergence
analysis through epoch measurements are presented in the
subsequent section presents results and discussion. It offers a
comparative analysis of optimizer performance in terms of
convergence speed, stability, and generalization, providing
insights into selecting the most effective optimizer for
predictive modelling tasks.

III. RESULTS AND DISCUSSION

This section presents the performance evaluation of the five
optimizers, analyzing training/testing metrics, convergence
speed, and stability. The discussion considers the bias-variance
tradeoff, model generalization, and the impact of RFE in the
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context of a small dataset.

A. Bias-Variance Tradeoff and Model Generalization

Table III and Table IV present the training and testing
performance metrics, respectively, for five optimization
algorithms: AdamW, AdaGrad, AmsGrad, Nadam, and SGD
with Momentum. The accuracy drops observed across different
optimizers indicate varying degrees of overfitting and
underfitting tendencies. Specifically, AdamW, AmsGrad, and
SGD with Momentum exhibited significant decreases in
accuracy between training and testing which are 17.1%, 18.0%,
and 16.2%, respectively, signaling potential overfitting. In
contrast, AdaGrad and Nadam showed smaller reductions of
only 6.9% and 11.3%, respectively, suggesting better
generalization capabilities. Recall values also displayed
considerable fluctuation: while AdamW maintained a perfect
recall of 100% in both training and testing, SGD with
Momentum suffered a notable decline from 50.0% during
training to 44.44% in testing, highlighting high bias and an
inability to capture the data distribution effectively.

A deeper analysis reveals that AdamW and AmsGrad exhibit
high-variance behavior, characterized by strong training
performance but notable deterioration during testing. AdamW
achieved 97.1% accuracy, 94.1% precision, and 100% recall
during training, but dropped to 80.0% accuracy, 76.9%
precision, and maintained 100% recall during testing. Similarly,
AmsGrad attained 91.3% accuracy and 96.4% precision in
training, followed by a decrease to 73.3% accuracy and 75.0%
precision in testing. These patterns are indicative of overfitting,
where the models memorize the training data at the expense of
broader generalization. Conversely, SGD with Momentum
demonstrates underfitting symptoms, achieving low training
accuracy (71.2%) and precision (82.4%), and deteriorating
further to 55.0% accuracy and 50.0% precision during testing.
Its recall also fell from 50.0% to 44.44%, signaling its limited
ability to learn complex relationships within the data.

In contrast, AdaGrad and Nadam demonstrated more
favorable bias-variance tradeoffs. AdaGrad achieved a
moderate training accuracy of 86.9%, with only a minor
reduction to 80.0% in testing, while maintaining an F1-Score of
84.2% across both datasets, indicating strong stability. Nadam
sustained a high F1-Score of 89.9% in training and 85.7% in
testing, with precision slightly dropping from 96.4% to 81.8%,
and recall improving from 84.4% to 90.0%. These results
suggest that optimizers employing adaptive learning rate
strategies, such as AdaGrad and Nadam, are better equipped to
manage model flexibility, thereby mitigating both excessive
memorization and insufficient pattern learning. To further
enhance the generalization performance, AdamW and
AmsGrad would benefit from additional regularization
techniques such as dropout, L2 regularization, or early
stopping. For underfitting cases observed in SGD with
Momentum, strategies such as dynamic learning rate
adjustment, batch normalization, or increasing model
complexity are recommended to improve learning capacity.

In summary, the comparative evaluation highlights that the
choice of optimizer significantly influences model
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generalization behavior. AdamW and AmsGrad demonstrate
tendencies toward high variance and overfitting, whereas SGD
with Momentum exhibits high bias and underfitting. AdaGrad
and Nadam achieve a better balance between bias and variance,
with Nadam emerging as the most consistent and reliable
performer across both training and testing scenarios. These
findings reinforce the critical importance of aligning optimizer
selection with the complexity of the dataset and model
architecture. Effective generalization is not solely dependent on
the optimizer itself but also requires complementary strategies
such as regularization or architectural refinement, tailored to
address either overfitting or underfitting challenges present in
the learning process.

TABLE III. TRAINING PERFORMANCE METRICS OF VARIOUS
OPTIMIZATION ALGORITHMS (CAPTION: TRAINING PERFORMANCE METRICS
FOR MLP MODELS USING DIFFERENT OPTIMIZERS ON RFE-SELECTED

FEATURES)

Optimizer Accuracy Precision Recall F1-Score

(%) (%) (%) (%)
AdamW 97.1 94.1 100 96.7
AdaGrad 86.9 96.0 75.0 84.2
AmsGrad 91.3 96.4 84.4 89.9
Nadam 91.3 96.4 84.4 89.9
SDG with 71.2 82.4 50.0 62.2
Momentum

TABLEIV.  TESTING PERFORMANCE METRICS OF VARIOUS OPTIMIZATION

ALGORITHMS (CAPTION: TESTING PERFORMANCE METRICS FOR MLP MODELS
USING DIFFERENT OPTIMIZERS ON RFE-SELECTED FEATURES. VALUES
REPRESENT PERFORMANCE ON THE UNSEEN TEST SET.)

Optimizer Accuracy Precision Recall F1-Score

(%) (%) (%) (%)
AdamW 80.0 76.9 100 86.95
AdaGrad 80.0 88.9 80.0 84.2
AmsGrad 73.3 75.0 90.0 81.8
Nadam 80.0 81.8 90.0 85.7
SDG with 55.0 50.0 44.44 47.05
Momentum

B. Optimizer Performance Comparison

The testing results highlight significant performance
differences across the five optimizers in terms of accuracy,
precision, recall, and F1-score. AdamW, AdaGrad, and Nadam
achieve the highest accuracy (80.0%), while AmsGrad follows
with 73.3%, and SGD with Momentum lags at 55.0%. Precision
varies significantly, with AdaGrad achieving the highest
(88.9%) and SGD with Momentum the lowest (50.0%),
suggesting that AdaGrad maintains a strong ability to correctly
classify positive instances while SGD with Momentum
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struggles. Recall is highest for AdamW (100%), followed by
AmsGrad and Nadam (90.0%), whereas SGD with Momentum
exhibits the lowest recall (44.44%), indicating a failure to
correctly capture positive cases. The F1-score follows a similar
trend, with AdamW (86.95%), Nadam (85.7%), and AdaGrad
(84.2%) performing the best, while SGD with Momentum
remains the weakest (47.05%), reinforcing its inability to
balance precision and recall effectively.

The results indicate that AdamW is highly recall-focused,
capturing all positive instances (100%) but at the cost of lower
precision (76.9%), leading to misclassifications. AdaGrad
demonstrates the best balance between precision and recall
(88.9% and 80.0%), making it the most stable in terms of
classification reliability. AmsGrad performs decently but falls
short of AdaGrad and Nadam due to its lower precision (75.0%)
and accuracy (73.3%), suggesting slight overfitting or
instability in decision-making. Nadam performs similarly to
AmsGrad but with a higher Fl-score (85.7%), making it a
slightly better choice for consistent generalization. SGD with
Momentum severely underperforms across all metrics,
particularly in recall and F1-score, indicating that it struggles to
learn effectively from the data and may require significant
tuning or architectural improvements to be viable.

From these comparisons, AdamW is the best choice when
prioritizing recall over precision, ensuring that all positive
instances are identified, making it useful for scenarios where
false negatives are costly. AdaGrad emerges as the most
balanced optimizer, with the highest precision and stable recall,
making it a reliable choice for applications requiring a trade-off
between correct identification and avoiding misclassifications.
Nadam is a strong competitor to AdaGrad, slightly favoring
recall over precision, making it more suitable for cases where
missing a positive instance is riskier than misclassifying a
negative one. AmsGrad, while still viable, needs further tuning
to enhance its precision for better performance. SGD with
Momentum appears to be the least effective optimizer for this
dataset, exhibiting weak classification performance overall,
likely due to suboptimal learning dynamics, and should either
be fine-tuned or replaced with a more adaptive optimizer.

C. Optimizer performance on Convergence and Stability using
RFE as feature selection.

The number of epochs required for convergence varies
significantly across the five selected optimizers highlighting
differences in their efficiency and stability. SGD with
Momentum consistently converges quickly, with epochs mostly
in the 23 to 105 range, demonstrating its ability to efficiently
navigate the loss landscape. However, minor variations across
runs suggest sensitivity to initialization or hyperparameters.
AdamW, another relatively fast optimizer, maintains a stable
convergence pattern, typically requiring 11 to 158 epochs, with
a few outliers where it converged faster than expected (Run 8:
11 epochs). Nadam and AmsGrad show higher variability, with
Nadam fluctuating between 21 and 171 epochs and AmsGrad
ranging from 11 to 145 epochs, indicating occasional instability
in learning. AdaGrad, in stark contrast, is the slowest optimizer,
requiring between 19 and 1000 epochs, frequently hitting the
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maximum limit, demonstrating its weakness in long-term
convergence due to an aggressively decaying learning rate.

TABLE V. EPOCHS REQUIRED FOR CONVERGENCE ACROSS 20 RUNS FOR
SELECTED OPTIMIZERS (CAPTION: EPOCHS TO CONVERGENCE (WITH EARLY
STOPPING PATIENCE 10 ON VALIDATION LOSS, MAX 1000 EPOCHS) FOR EACH

OPTIMIZER OVER 20 INDEPENDENT RUNS.)

Run  SDG with Adagrad AdamW Nadam AmsGrad
Momentom

Run 66 534 100 39 11

1

Run 23 621 100 91 103

2

Run 32 1000 54 171 84

3

Run 79 386 69 122 75

4

Run 65 205 102 128 23

5

Run 45 488 158 83 100

6

Run 49 815 96 21 92

7

Run 57 1000 11 144 117

8

Run 62 1000 122 45 57

9

Run 105 410 148 77 93

10

Run 57 463 67 107 116

11

Run 26 368 158 127 80

12

Run 52 739 43 60 96

13

Run 65 282 99 117 132

14

Run 46 19 122 26 145

15

Run 69 335 71 105 76

16

Run &4 13 76 85 54

17

Run 84 1000 11 65 82

18

Run 75 966 11 98 11

19

Run 74 132 117 155 96

20




From these results, we can infer that momentum-based
optimizers (SGD with Momentum and AdamW) perform
consistently well in terms of convergence speed and stability.
Momentum allows for faster movement across flat regions,
reducing the time required for optimization. AdamW’s weight
decay component prevents excessive parameter updates,
leading to smooth and controlled convergence. Nadam and
AmsGrad, while adaptive, display moderate instability,
possibly due to their reliance on higher-order moment
estimates, which may amplify noisy gradient updates. The
extreme slowness of AdaGrad confirms its well-known issue of
diminishing learning rates, which can prevent the optimizer
from making meaningful updates in later training stages. The
fact that AdaGrad often requires 1000 epochs suggests it may
be unsuitable for models trained on this dataset without
modifications such as learning rate restarts.

For practical applications, AdamW and SGD with
Momentum are the most reliable optimizers, as they balance
fast convergence and stability without extreme fluctuations in
required epochs. Nadam and AmsGrad are viable but require
fine-tuning, particularly with respect to learning rates and batch
sizes, to prevent oscillations that may slow or destabilize
learning. AdaGrad, in its current form, is not ideal for this
dataset, as it converges too slowly, making it computationally
expensive and inefficient for training deep models. RFE feature
selection appears to favor optimizers that balance momentum
and adaptive learning rates, as seen in the strong performance
of AdamW and SGD with Momentum, while penalizing
optimizers that rely too heavily on learning rate decay, such as
AdaGrad. Future research should explore how different
learning rate schedules affect these optimizers, as techniques
like cyclical learning rates or warm restarts might mitigate some
of the instability seen in Nadam and AmsGrad while improving
the efficiency of AdaGrad.

D. Limitations of the Study

The primary limitation of this study is the small dataset size
(N=99). MLP models are typically data-hungry, and a small
sample size can lead to:

i. Overfitting: Models may learn idiosyncrasies of
the training data that do not generalize. This was
observed with AdamW and AmsGrad.

ii. Unstable Performance Metrics: Results might be
sensitive to the specific train/validation/test split.
While 20 runs were used for epoch convergence,
the main performance metrics in Tables III and
IV were based on a single train/validation/test
split. Employing k-fold cross-validation would
provide more robust estimates.

ii. Limited Generalizability: Findings may not
directly translate to larger, more diverse student
populations.

Additionally, this study used default or standard
hyperparameter settings for the optimizers. Extensive
hyperparameter tuning for each optimizer might yield different
relative performances. The choice of specific MLP architecture
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also influences results.

These limitations mean the findings should be interpreted as
preliminary insights into optimizer behavior on small, RFE-
processed educational datasets.

IV. CONCLUSION

This study investigated the impact of five optimization
algorithms (AdamW, Nadam, AdaGrad, AmsGrad, and SGD
with Momentum) on the performance of MLP-based student
classification models, using RFE for feature selection on a
dataset of 99 students. Key findings indicate that AdamW and
Nadam offered the best balance of rapid convergence and
strong predictive performance on unseen data, with AdamW
achieving the highest F1-score (86.95%) and Nadam showing
robust generalization (80.0% accuracy, 85.7% Fl-score).
AdaGrad also demonstrated stable, albeit slower, performance.
Conversely, SGD with Momentum underperformed
significantly, suggesting underfitting, while AdamW and
AmsGrad showed signs of overfitting, a risk heightened by the
small dataset.

The study highlights that even with dimensionality reduction
via RFE, optimizer choice significantly influences a model's
learning efficiency, stability, and generalization. For small
datasets like the one used, adaptive optimizers such as Nadam
and AdaGrad appear to offer better generalization than more
aggressive optimizers if overfitting is a concern. However, the
primary limitation remains the dataset size, which tempers the
conclusiveness of these findings. Institutions with similar data
characteristics might consider Nadam or AdamW for initial
predictive models but must be mindful of potential overfitting
and the critical need for validation on larger datasets.

Future research should prioritize validating these findings on
larger, more diverse student populations. Exploring techniques
like k-fold cross-validation for more robust performance
estimation, systematic hyperparameter optimization for each
optimizer, and investigating ensemble methods that could
leverage the distinct strengths of different optimizers are crucial
next steps to enhance predictive accuracy and reliability in
educational applications. Further work could also explore the
impact of these optimizers on fairness and bias in student
outcome predictions.
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