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Abstract—Hydropower plays a significant role in Malaysia’s 
renewable energy mix, particularly in regions with abundant 
water resources such as Sarawak. Accurate forecasting of 
hydroelectric generation is increasingly important to support 
effective energy planning and the country’s sustainability 
objectives. This study explores the performance of four machine 
learning models: Artificial Neural Networks (ANN), Support 
Vector Machines (SVM), Random Forest, and XGBoost in 
forecasting Malaysia’s hydroelectric power output using 
socioeconomic indicators, including Gross Domestic Product 
(GDP), energy consumption, and population. ANN demonstrated 
the most promising results among these models, achieving a testing 
Mean Squared Error (MSE) of 1.1541×10⁴ and a correlation 
coefficient (R) of 0.9962. These results suggest that ANN can 
capture the underlying patterns within the data and may offer a 
valuable tool for improving the reliability of hydropower 
generation forecasts, thereby contributing to Malaysia’s ongoing 
efforts toward renewable energy development. 

 
Index Terms— Artificial Neural Network, economic indicators, 
energy consumption, energy forecasting, GDP, hydroelectric 
power, machine learning, population, Random Forest, Support 
Vector Machine, XGBoost 

 

I. INTRODUCTION 
Hydropower has long contributed to Malaysia’s renewable 

energy development, particularly in regions with abundant 
water resources such as Sarawak. According to the Malaysia 
Renewable Energy Roadmap (MyRER), it is identified as one 
of four key areas for expanding clean energy, alongside solar, 
bioenergy, and emerging technologies [1]. The roadmap 
outlines targets to increase renewable energy’s share in the 
national installed capacity mix to 40% by 2035, with 
hydropower remaining a relevant and established component. 

As of 2023, hydropower accounted for approximately 15% of 
Malaysia’s total energy mix, reflecting its continued role in 
national energy planning. In support of this, initiatives such as 
the Feed-in Tariff (FiT) and Low Carbon Power Generation 
(LCPG) have been introduced to promote small-scale hydro 
projects and facilitate a shift toward low-carbon energy 
development [1]. 

Beyond electricity generation, hydropower can potentially 
deliver broader social and environmental benefits, especially in 
rural and less-developed areas. Recent reviews indicate that 
small-scale hydropower is receiving growing attention in 
Peninsular Malaysia as a means to meet local energy needs 
while reducing reliance on fossil fuels [2]. Although Malaysia 
is estimated to have over 29,000 MW of gross hydropower 
potential, only a portion of this capacity has been utilised to date 
[2]. This indicates an opportunity for further development in the 
sector, which could support energy diversification and local 
development objectives. 

Accurate forecasting of hydropower generation is becoming 
increasingly crucial as Malaysia pursues a more sustainable and 
balanced energy mix. However, traditional forecasting methods 
often face limitations in modelling the complex, nonlinear 
interactions that characterise energy systems, particularly when 
socioeconomic variables are involved. In recent years, Artificial 
Intelligence (AI) and Machine Learning (ML) techniques have 
gained attention for improving forecasting accuracy. Models 
such as ANN, SVM, Random Forest, and XGBoost have shown 
promising results in energy-related studies due to their capacity 
to learn patterns from large and complex datasets [3], [4]. 

Socioeconomic factors such as GDP, energy consumption, 
and population growth are recognised as influential drivers of 
energy production and demand. Their interrelationships can 
shape trends in hydropower generation, particularly in 
developing economies. For instance, Bawazir et al. [5] found 
that long-term patterns in renewable energy use, including 
hydropower, are closely tied to economic performance in 
Pakistan, suggesting the presence of feedback between energy 
development and economic growth. 

This study compares four AI-based models, ANN, SVM, 
Random Forest, and XGBoost, to forecast Malaysia’s 
hydroelectric generation using historical socioeconomic data. 
By evaluating model performance under consistent conditions, 
the study offers insights into the potential of data-driven 
approaches to support more informed and effective energy 
planning. The remainder of this paper is organised as follows: 
Section 2 presents the literature review, followed by Sections 3 
and Section 4, which cover the methodology and the results and 
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discussion, respectively. The last two sections provide the 
concluding remarks and recommendations. 

II.   LITERATURE REVIEW 
This literature review examines previous studies on 

hydroelectric power forecasting. It discusses the importance of 
accurate forecasting and the main challenges involved. The 
review also explores the role of socioeconomic factors such as 
GDP and population, and compares traditional forecasting 
methods with modern machine learning approaches. The goal 
is to provide an understanding of current practices and potential 
areas for improvement. 

A. Hydroelectric Generation Forecasting: Importance and 
Challenges 

Hydroelectric power plays a crucial role in the renewable 
energy mix of many countries. In Indonesia, for example, 
hydropower accounted for 57% of all electricity generated from 
renewable sources by the end of 2021, underscoring its 
dominance over more intermittent sources such as wind and 
solar [6]. The reliability, flexibility, and efficiency of 
hydropower often exceed 90% making it a promising option for 
countries looking to reduce dependence on fossil fuels [6]. 
Additionally, its ability to provide ancillary services, stabilise 
fluctuations in other renewable energy sources, and respond 
quickly to demand changes strengthens its potential to support 
energy security [7]. Furthermore, hydropower is considered an 
environmentally friendly alternative to conventional fossil-
fuel-based generation, offering a cleaner means of electricity 
production [7]. 

However, forecasting hydroelectric generation involves 
several challenges due to various environmental and external 
factors. Seasonal rainfall, temperature variations, and changes 
in inflow patterns introduce a high degree of uncertainty in 
predicting hydropower output [8]. For instance, in the Indian 
Himalayan region, extreme silt buildup during monsoon 
seasons has led to frequent shutdowns of hydro units to avoid 
turbine damage, resulting in significant capacity losses [9]. 
These environmental factors are compounded by socio-
economic and regulatory influences, such as competing water 
demands and operational constraints, which further complicate 
prediction accuracy [7]. The non-linear relationships between 
generation and external factors, such as the effects of climate 
change on water levels and melting rates, also add complexity 
to forecasting models [10]. 

Reliable forecasting of hydroelectric generation is critical for 
effective energy planning and decision-making. Accurate 
predictions of inflows and generation capacity are essential for 
optimising resources, ensuring the economic viability of 
hydropower projects, and preventing overuse or underuse of 
infrastructure [11]. Poor forecasting can lead to operational 
inefficiencies, such as unutilized capacity or excessive wear on 
equipment, which have financial consequences [12]. 
Additionally, in the context of modern power systems, reliable 
forecasts of hydropower generation are vital for balancing grid 
stability, especially when integrated with variable energy 

sources like wind and solar [4]. The growing adoption of AI-
based forecasting methods highlights the increasing recognition 
of the need for accurate, timely insights to manage hydropower 
assets effectively [12], [13]. 

B. Socioeconomic Indicators and Their Relevance in Energy 
Forecasting 

Including socioeconomic indicators such as GDP, 
population, and energy consumption in hydroelectric energy 
forecasting is grounded in their direct influence on energy 
demand and development planning. Energy is a key driver of 
national development, influencing industrial growth and overall 
economic progress [13]. Energy consumption patterns, 
influenced by household occupancy and environmental 
conditions, are fundamental when predicting demand. For 
instance, combining occupancy data with energy usage and 
weather variables has been shown to improve prediction 
accuracy, with R² values surpassing 0.85 in some models [14]. 
These findings suggest that incorporating socioeconomic 
variables such as population behaviour provides essential 
context for understanding energy consumption trends. 

Several studies have confirmed that electricity demand is 
closely linked to economic growth and demographic changes. 
As population sizes increase and urbanisation spreads, 
electricity demand rises due to higher technological adoption 
and infrastructure development [15]. For example, emerging 
energy systems in smart cities have highlighted the importance 
of integrating socioeconomic factors, although this integration 
remains challenging due to the diverse nature of the data 
involved [14]. The increasing importance of population and 
economic variables in forecasting reflects a broader trend where 
socioeconomic progress drives energy demand growth. 

In hydroelectric energy, socioeconomic factors can influence 
both energy demand and the design of energy systems. In Iran, 
for instance, forecasts of energy consumption have been 
significantly improved by incorporating GDP and population 
data alongside traditional energy consumption measures [16]. 
Hydroelectric power plants serve multiple purposes beyond 
electricity generation, including flood control, irrigation, and 
water storage, all of which align with broader socioeconomic 
needs [13]. However, factors such as community resistance to 
displacement, fiscal constraints, and a lack of skilled labour in 
some developing countries complicate the deployment of 
hydroelectric systems [7]. These challenges demonstrate the 
importance of considering socioeconomic variables when 
evaluating the feasibility and effectiveness of hydroelectric 
power projects. 

C. Traditional and Statistical Approaches in Hydropower 
Prediction 

Historically, traditional time series models such as 
Autoregressive Integrated Moving Average (ARIMA), 
regression-based techniques, and grey models have been widely 
adopted for hydropower forecasting due to their straightforward 
mathematical structure and interpretability. These models have 
shown reliable performance, particularly in capturing linear 
trends and periodic behaviours in time-series data. ARIMA, in 
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particular, has been favoured for its ability to handle temporal 
dependencies, and has been a standard for modelling 
hydrological time series [17]. Regression techniques, such as 
multiple linear regression and k-Nearest Neighbour, have also 
been used for short-term water level prediction because of their 
simplicity [18]. However, while these statistical tools perform 
well under stable, linear conditions, they may struggle when 
dealing with nonlinearity and variable interactions that 
characterise real-world hydropower systems [4]. 

Despite their historical significance, traditional methods 
have limitations that may affect their performance in more 
complex forecasting scenarios. Multivariate regression models 
are effective for analysing cross-sectional data but struggle to 
capture dynamic temporal patterns in time series forecasting. 
This limitation becomes more apparent in hydrological 
systems, where relationships between variables like rainfall, 
inflow, and power generation can change over time. ARIMA 
models help capture stationarity and seasonality, but rely on 
linear assumptions, which can limit their performance when 
dealing with complex or highly variable inputs such as 
fluctuating climatic conditions or sudden demand spikes [19]. 
Furthermore, these models can fail to predict extreme 
hydropower production or peak inflows, which are crucial for 
operational planning in energy generation [18]. Traditional 
models are also sometimes prone to overfitting, mainly when 
employed in simpler single-model approaches, where 
sensitivity to hyperparameter tuning may affect their predictive 
accuracy [19]. 

Given these challenges, researchers have been exploring 
more advanced techniques, including machine learning models 
and hybrid approaches, which have shown promise in capturing 
nonlinear patterns and multi-factor interactions more 
effectively than traditional methods. Such techniques can 
provide improved performance in forecasting complex 
hydropower systems, especially in environments characterised 
by significant variability [20]. 

D. Machine Learning in Energy Forecasting: A Growing Trend 
In recent years, machine learning (ML) has been used for 

energy forecasting, gaining increasing attention, driven by the 
need for accurate and adaptive models that can handle complex, 
nonlinear data. Although traditional models have their merits, 
they often fail to capture the intricate relationships within 
modern energy systems. As a result, ML has emerged as a 
promising alternative, offering flexibility and the ability to learn 
from data without relying on rigid assumptions. The integration 
of ML into areas like hydropower and renewable energy 
forecasting has shown potential in improving system efficiency 
and grid stability, although its widespread impact is still being 
explored [13], [21]. 

Several ML models have been widely applied in energy 
forecasting, with ANN, SVM, Random Forests, and Gradient 
Boosting models such as XGBoost being among the most 
commonly used. ANN is favoured for its ability to model 
nonlinear relationships and temporal dependencies in data [22], 
while SVM is often preferred for its generalisation capabilities, 
particularly in situations with smaller datasets [4]. Random 

Forest and XGBoost, on the other hand, have gained 
recognition for their robustness and high predictive accuracy, 
particularly when dealing with high-dimensional or noisy data 
[15], [23]. Additionally, hybrid models that combine multiple 
ML approaches are being explored to overcome the limitations 
of single models and improve forecasting accuracy [20]. 

Unlike traditional statistical methods, ML models provide 
several advantages, including handling nonlinearities, feature 
interactions, and temporal dependencies in a way that 
conventional methods cannot. For instance, an ANN can 
automatically extract complex patterns from data, which 
improves forecasting accuracy and enables the handling of 
time-series data more effectively [22], [24]. Ensemble methods 
like Random Forest and XGBoost offer robust performance and 
can mitigate the effects of overfitting, leading to more reliable 
predictions. These strengths help explain why ML is rapidly 
becoming an essential tool for energy forecasting, providing a 
more flexible and data-driven approach compared to traditional 
models [21], [25]. 

E. Artificial Neural Networks (ANN) in Hydropower and 
Energy Forecasting 

ANNs have demonstrated their utility in energy forecasting, 
primarily due to their capacity to model complex, nonlinear 
relationships in data. For instance, ANN models have been 
applied to predict energy consumption in buildings, where they 
can capture nonlinear patterns that traditional statistical 
methods may not fully address [20]. In hydropower forecasting, 
ANN models have been explored to predict reservoir inflows 
and energy production. While they have shown potential, 
performance varies depending on the specific model 
configuration and the data used, indicating the importance of 
proper setup and data selection [18]. Furthermore, ANN models 
have been successfully implemented in predicting electricity 
demand based on temperature variations, where they 
outperformed some existing methods, highlighting their 
effectiveness in handling multivariate inputs [26]. 

The strength of ANNs lies in their ability to model complex, 
nonlinear behaviours, making them particularly well-suited for 
systems like energy forecasting, where such relationships are 
common. For example, ANNs can effectively capture the 
dynamic and nonstationary behaviour of electricity markets and 
hydropower systems, adapting to changing conditions like 
seasonal variations [17]. This ability to approximate continuous 
functions allows ANN models to perform well in renewable 
energy forecasting and other areas with fluctuating patterns 
[16]. In wind speed forecasting, ANN models have also 
demonstrated their ability to provide more accurate predictions 
than traditional models such as ARIMA, especially when 
dealing with high variability in the data [22]. 

However, despite their strengths, ANNs come with 
challenges. One of the main concerns is the risk of overfitting, 
especially when models are trained on small or noisy datasets. 
This can limit their generalisation capabilities, making them 
less effective on unseen data [21]. Additionally, ANNs require 
substantial computational resources and large datasets for 
practical training [8]. Another limitation is their lack of 
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interpretability, which can be problematic in applications where 
understanding the decision-making process is essential. 
Furthermore, optimising ANN models requires careful 
parameter selection and substantial trial-and-error, which can 
be time-consuming [3]. Despite these challenges, ANNs remain 
a powerful tool in energy forecasting when applied with 
appropriate care and resources. 

F. Ensemble Methods (Random Forest and XGBoost) in Energy 
Modelling 

Ensemble learning has proven to be a highly effective 
approach in energy modelling due to its ability to combine 
multiple models to improve prediction accuracy. Techniques 
such as Random Forest and Extreme Gradient Boosting 
(XGBoost) are particularly noted for their robustness and 
ability to handle complex, nonlinear relationships in data. By 
combining multiple decision trees, Random Forest helps reduce 
variance and overfitting, thus enhancing prediction reliability. 
It has been successfully applied in energy forecasting tasks, 
including predicting building energy consumption and 
hydropower generation based on climate data. In one study, 
Random Forest demonstrated lower normalised root mean 
square error (NRMSE) compared to other models, showcasing 
its effectiveness in handling multivariate regression tasks with 
features like cooling degree days and historical consumption 
[10], [27]. 

XGBoost, an optimised gradient boosting technique, offers 
strong predictive performance by iteratively correcting the 
errors of previous models. Known for its high flexibility and 
accuracy, XGBoost has been widely used in short-term load 
forecasting and renewable energy prediction. In many cases, 
XGBoost outperforms other methods, particularly when 
dealing with large, complex datasets that involve intricate 
feature interactions. Studies have shown that XGBoost can be 
highly effective when integrated into hybrid models. For 
instance, a hybrid ensemble model combining Random Forest, 
XGBoost, and time series components like Seasonal Naive 
achieved an R² value of 0.95941 and significantly improved 
forecasting accuracy and robustness compared to standalone 
models [19], [20]. 

In conclusion, Random Forest and XGBoost are valuable 
tools in energy modelling. Random Forest is praised for its 
robustness and ability to reduce overfitting, making it suitable 
for handling diverse input data. On the other hand, XGBoost is 
recognised for its high predictive accuracy and flexibility, 
particularly in complex datasets. When these methods are used 
in hybrid models, they can complement each other’s strengths, 
leading to improved overall performance in energy 
consumption and generation forecasting [21], [27]. 

III. METHODOLOGY 
This chapter presents the methodology to develop and 

evaluate four machine learning models for forecasting 
hydroelectric power generation based on key socioeconomic 
indicators. The main goal is to identify the most reliable model 
for predicting hydroelectric generation using variables such as 
GDP, Energy Consumption, and Population. 

The overall methodological framework outlined in the 
flowchart, as shown in Fig. 1, is structured into five main stages: 
(i) data collection and preprocessing, (ii) model architecture and 
configuration, (iii) training and validation process, (iv) testing 
and performance evaluation, and (v) result analysis and 
comparison. Each stage is designed to ensure consistency and 
fairness in model comparison using the same dataset, 
performance metrics, and evaluation conditions. 

By examining the performance of each machine learning 
technique under the same experimental setup, this study aims to 
offer insights into model suitability for forecasting 
hydroelectric generation using socioeconomic inputs under 
identical experimental conditions. 

 

Fig. 1. Flowchart of the Project 
 

A. Data Collection and Preprocessing 
This study used annual data from 1980 to 2021, sourced from 

the Malaysia Energy Information Hub and Macrotrends, 
ensuring reliable coverage of key socioeconomic and energy 
indicators. The selected input variables were GDP, Energy 
Consumption, and Population, while the target variable was 
Hydroelectric Power Generation. 

Before model training and evaluation, the dataset underwent 
preprocessing steps to ensure consistency and eliminate biases 
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caused by differences in data scales. Min-max normalisation 
was used for the ANN model as shown in (1)[28], required by 
the Neural Net Fitting App. This technique typically scales each 
feature to a fixed range [0, 1]. This ensures that all input values 
are within the same scale, essential for neural networks to 
converge efficiently during training. 

 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
(𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) 
(1) 

 

For SVM, Random Forest, and XGBoost, z-score 
normalisation as shown in (2) was applied programmatically to 
align with each algorithm's internal assumptions [28]. Where μ 
is the mean and σ is the standard deviation of the feature. Z-
score normalisation benefits algorithms like SVM, which are 
sensitive to feature scaling when computing distances or 
defining decision boundaries. This standardisation method 
transforms the data to have a mean of 0 and a standard deviation 
of 1.  

 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑥𝑥 − 𝜇𝜇)

𝜎𝜎
 

(2) 

 
Any missing values in the dataset were handled using 

appropriate imputation methods to ensure completeness 
without sacrificing data integrity. After preprocessing, the data 
was divided into training and testing sets in a 70-15-15 ratio. 
This split allowed for balanced model development, tuning, and 
unbiased performance evaluation across all models. 

B. Model Selection and Configuration 
To evaluate the comparative performance of various machine 

learning approaches in forecasting hydroelectric generation, 
this study employed four distinct models: ANN, SVM, Random 
Forest, and XGBoost. These models were selected due to their 
individual strengths and proven reliability in regression and 
energy-related forecasting applications, offering a balanced 
representation of both traditional and ensemble-based learning 
techniques.  

The ANN was chosen for its ability to capture complex, 
nonlinear interactions between input variables.  Due to its 
capacity to model nonlinear relationships, the ANN can 
perform effectively even with datasets of modest size. In this 
study, the ANN was implemented using MATLAB’s Neural 
Net Fitting App, chosen for its convenience and built-in tools 
for preprocessing, partitioning, and visualising training 
performance, regression diagrams, and error histograms. 

The ANN model architecture consisted of three input 
neurons (GDP, Energy Consumption, and Population), one 
hidden layer with ten neurons, and a single output neuron for 
hydroelectric generation. The model was trained using the 
Levenberg–Marquardt algorithm with a maximum of 1000 
epochs, a performance goal of zero, and early stopping after six 
validation failures. Training was halted at epoch 13 in practice 
when no further improvement was observed in validation 
performance. 

SVM was selected based on its strong performance in high-
dimensional spaces and suitability for small datasets. Using the 
fitrsvm function in MATLAB with a Radial Basis Function 
(RBF) kernel, the SVM model was designed to capture non-
linear relationships with minimal manual configuration. The 
input data were standardised using z-score normalisation before 
training to align with the algorithm’s assumptions. 

Random Forest was included in the study due to its 
robustness against overfitting and ability to manage datasets 
with irrelevant or noisy features. Implemented using 
MATLAB’s fitrensemble function with the Bagging method, 
the model was allowed to use default parameters to reflect its 
base-level performance. 

Similarly, the XGBoost model was incorporated due to its 
reputation for high accuracy and computational efficiency in 
structured data problems. Built using the same fitrensemble 
function but with the LSBoost (Least Squares Boosting) 
method, XGBoost constructs trees sequentially to minimise 
residual errors, making it particularly effective in refining 
predictions over iterations. 

Although the ANN was developed through a graphical 
interface, while the other models were coded via scripting, all 
were trained on the same preprocessed data using identical 
inputs and evaluation metrics. To ensure transparency and 
reproducibility, the specific configurations and training 
parameters used for each model are summarised in Table 1. 

TABLE I. MODEL CONFIGURATIONS AND TRAINING PARAMETERS 

Model MATLAB Tool / 
Function 

Learning Method Key Parameters 
(Values) 

ANN Neural Net Fitting 
App 

Levenberg–
Marquardt 

3 input neurons 
(GDP, Energy, 
Population) 
1 hidden layer with 10 
neurons 
Performance goal: 0 
Max iterations: 1000 
Validation checks: 6 
Initial Mu: 0.001 
Early stopping at 
epoch:13 

SVM fitrsvm Support Vector 
Regression (RBF 
Kernel) 

Box constraint: 1 
Kernel scale: auto 
Epsilon: 0.1 

Random 
Forest 

fitrensemble Bagging 
(Ensemble Trees) 

Learning cycles: 100 
Learner type: Tree 
Max splits: 10 
Min leaf size: 1 

XGBoost fitrensemble LSBoost 
(Boosted Trees) 

Learning cycles: 100 
Learning rate: 0.1 
Learner type: Tree 

 

C. Training and Validation Process 
Each model was trained using the same 70% training subset, 

with the remaining 30% split equally into validation and test 
sets. This partitioning was controlled using MATLAB’s 
partition function for the SVM, Random Forest, and XGBoost 
models, ensuring randomised and consistent splits. For the 
ANN model, data division was configured directly within the 
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Neural Net Fitting App, allowing internal training, validation, 
and test ratios to be set as 70%, 15%, and 15%, respectively. 

During the training phase, each model learned the functional 
mapping between the selected input features (GDP, Energy 
Consumption, and Population) and the target output 
(Hydroelectric Generation). The validation subset was used to 
monitor the model’s generalisation ability and detect any signs 
of overfitting or underfitting. While the Neural Net Fitting App 
offered built-in visualisation tools, the remaining models 
required explicit validation handling via code and plotting.  

In addition to the standard train-validation-test split, a five-
fold cross-validation procedure was applied to all models to 
assess their generalisation performance. This involved dividing 
the dataset into five equal parts and iteratively training on four 
parts while testing the remaining one. The process was repeated 
five times so that each fold served as the test set once. All five 
iterations' performance metrics (MSE and R-value) were 
averaged to provide a more reliable predictive accuracy and 
robustness evaluation. 

D. Performance Evaluation and Comparison  
Model performance was assessed using two key evaluation 

metrics: Mean Squared Error (MSE) and the correlation 
coefficient (R-value). These were applied to training, 
validation, and testing datasets to assess learning behaviour and 
generalisation performance. Equation (3) shows the formula of 
MSE, where, ŷ𝑖𝑖 represents the predicted values, 𝑦𝑦𝑖𝑖  is the actual 
value, and n is the number of test samples [29].  A lower MSE 
indicates that predictions are closer to the actual outputs. At the 
same time, (4) is the formula for the R-value where ŷ is the 
mean of the actual values. A higher R-value (closer to 1) reflects 
a stronger linear correlation between predicted and actual 
values [29]. 

Regression plots were generated to visualise the relationship 
between predicted and actual values, where a tighter alignment 
with the 45-degree reference line indicated more accurate 
predictions. Additionally, error histograms were produced to 
assess residual distribution across all subsets, highlighting 
consistency and potential bias. 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − ŷ𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

𝑦𝑦𝑖𝑖  
(3) 

 
 

𝑅𝑅 = �1 −
∑ (𝑦𝑦𝑖𝑖 − ŷ𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − ŷ)2𝑛𝑛
𝑖𝑖=1

 
(4) 

IV. RESULTS  AND DISCUSSION 
This study evaluates the performance of four machine 

learning models, ANN, SVM, Random Forest, and XGBoost, 
in forecasting hydroelectric power generation using economic 
indicators (Population, GDP, and Energy Consumption). Each 
model was trained and tested on data from 1980 to 2021, and 
evaluated using MSE and R-values, regression plots and error 
histograms. 

A. Performance Evaluation of Machine Learning Models 
This subsection presents a comparative assessment of model 

performance based on the computed MSE and R-values for the 
training, validation, and testing phases. A detailed summary of 
the performance metrics for ANN, SVM, Random Forest, and 
XGBoost is provided in Table 2. 

TABLE II. PERFORMANCE EVALUATION OF ANN, SVM, RANDOM 
FOREST AND XGBOOST 

Models  Training Validation Testing 
 ANN MSE 5.0355e+03 9.3132e+03 1.1541e+04 

R 0.9941 0.9788 0.9962 
SVM MSE 1.7091e+05 1.6818e+05 1.3031e+05 

R 0.9703 0.9865 0.9250 
Random 
Forest 

MSE 1.0423e+05 7.6374e+04 6.2457e+04 
R 0.9158 0.9453 0.9438 

XGBoost MSE 1.2657e+05 1.1475e+05 5.8948e+04 
R 0.8487 0.8952 0.9196 

 
ANN demonstrated the highest predictive accuracy among 

the evaluated models with the lowest MSE across all phases. 
During training, ANN achieved an MSE of 5.0355×10³, 
significantly lower than the other models, and a substantial R-
value of 0.9941. This trend continued into validation (MSE = 
9.3132x10⁴, R = 0.9788) and testing (MSE = 1.1541×10⁴, R = 
0.9962), indicating excellent generalisation and minimal error. 
In contrast, the SVM model exhibited the highest error, with an 
MSE of 1.7091×10⁵ during training. Although its correlation 
improved in validation (R = 0.9865), its high testing error (MSE 
= 1.3031×10⁵) made it less reliable. Random Forest and 
XGBoost offered moderate performance, with Random Forest 
showing slightly lower error values than SVM, and XGBoost 
performing marginally better in testing but struggling in the 
training phase. 

ANN consistently showed the highest correlation between 
predicted and actual values, with R-values exceeding 0.99 in 
training and testing, confirming its strong fit to data trends. 
Despite having a high R-value of 0.9703 during training, SVM 
exhibited a weaker correlation (R = 0.9250) in testing, 
suggesting inconsistency in performance across phases. 
Random Forest and XGBoost displayed moderate correlation 
strengths, with XGBoost having the lowest training R-value 
(0.8487), which indicates difficulties in learning underlying 
data patterns. Although Random Forest improved validation 
and testing, it never reached the correlation levels observed in 
ANN. 

A key aspect of evaluating model performance is how well 
each model generalises to unseen data. The ANN model 
showed consistently strong results from training to testing, 
suggesting a good balance between model complexity and 
generalisation ability. While Random Forest did not surpass 
ANN, it showed relatively better generalisation than SVM, as 
reflected in the decrease in error from training to validation. The 
SVM model maintained relatively stable correlation values, 
though the overall error levels remained high, indicating some 
limitations in adapting to new data. XGBoost, on the other 
hand, appeared to face challenges with generalisation, showing 
less consistent performance, particularly during the training 
phase, where its correlation was comparatively lower. 
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Regarding overall performance, ANN emerged as the most 
suitable model for this forecasting task due to its low errors and 
high predictive correlation. With its high MSE, SVM was the 
least reliable, as it struggled to capture non-linear relationships 
effectively. While better than SVM in some aspects, Random 
Forest still lagged behind ANN due to higher error rates. 
XGBoost showed some promise but suffered from 
inconsistencies, particularly in model fitting. These findings 
suggest that ANN is the best choice for forecasting 
hydroelectric power generation, while other models may 
require further optimisation to improve their reliability. 

B. Error Distribution and Model Robustness 
This subsection explores the distribution of prediction errors 

to assess how consistently each model performs across different 
datasets. Error histograms offer a visual perspective on the 
spread of prediction errors, which can help indicate the 
presence of outliers, potential overfitting, and the general 
behaviour of each model across datasets. The comparative error 
distributions of all four models are shown in Fig. 2. 

Compared to the other models, ANN exhibited the most 
balanced error distribution, with errors predominantly 
concentrated within a narrow range of -90 to 100. A well-
defined peak near zero error suggests strong predictive 
accuracy and minimal deviation from actual values. In contrast, 
SVM displayed the broadest error distribution, with errors 
extending up to ±1500 and clustering around -500 and 500, 
indicating weaker predictive precision. Random Forest and 
XGBoost showed moderate error concentration, with most 
errors falling within -500 to 500, but lacked the tight 
distribution seen in ANN. 

ANN demonstrated a stronger generalisation capability, as 
evidenced by its consistent error patterns across training, 
validation, and testing phases. The low presence of extreme 
outliers further supports its robustness in capturing patterns 
with minimal overfitting. Random Forest showed slight 
improvements over SVM but still contained significant outliers, 
reducing its overall reliability. SVM struggled with 
generalisation, as its validation and test errors exhibited high 
variance, leading to unreliable predictions. XGBoost provided 
better robustness than SVM and Random Forest, but its error 
spread remained wider than ANN, suggesting some 
inconsistencies in generalisation. 

The high concentration of errors around zero in ANN 
indicates a superior ability to capture complex relationships 
within the data. In this regard, XGBoost performed better than 
SVM and Random Forest, but had a lower density in the zero-
error bin, reflecting less precision in modelling the data's 
underlying structure. While slightly better than SVM, Random 
Forest still showed a long-tailed error distribution, suggesting 
occasional large deviations from actual values. These results 
indicate that ANN is the most precise model, followed by 
XGBoost, while SVM and Random Forest exhibit lower 
accuracy in capturing data trends. 

Considering error distribution and robustness, ANN emerged 
as the most reliable model, maintaining low error spread and 
strong generalisation across datasets. XGBoost demonstrated 
moderate performance but lacked the precision to match ANN’s 
effectiveness. Random Forest showed slight improvements 
over SVM, but its inconsistent error distribution limited its 

reliability. SVM exhibited the weakest performance, with high 
prediction errors and poor generalisation, making it the least 
suitable choice for this forecasting task. 

 
 

(a) ANN 
 

 

(b) SVM 
 

 

(c) Random Forest 
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(d) XGBoost 
Fig. 2. Error Histogram: (a) ANN, (b) SVM, (c) Random 
Forest and (d) XGBoost 

 
 

(a) ANN 

 

(b) SVM 

 

(c) Random Forest 

 

(d) XGBoost 
Fig. 3. Regression Plot: (a) ANN (b)SVM (c) Random Forest 
(d) XGBoost 
 

C. Insights into Regression Plots 
To further assess the model’s ability to predict, regression 

plots are used to visualise the alignment between expected and 
actual hydroelectric generation values. These plots reveal how 
well each model captures underlying data patterns. Fig. 3 
illustrates the regression performance of all models. 

ANN demonstrated the strongest predictive performance, 
with its regression plot showing a near-perfect alignment 
between predicted and actual values. The data points closely 
followed the perfect-fit line, indicating the model's ability to 
accurately capture complex relationships between Population, 
GDP, and Energy Consumption in predicting hydroelectric 
generation. In contrast, SVM exhibited noticeable deviations 
from the perfect-fit line, with several scattered data points, 
particularly at higher values of hydroelectric generation. This 
suggests that SVM struggled to generalise well across the 
dataset. 

The minimal scatter in the ANN’s regression plot highlights 
its strong generalisation capability, making it the most reliable 
model tested. Random Forest displayed moderate performance, 
with a reasonable alignment to the regression line but increased 
scatter for larger hydroelectric generation values. This suggests 
that while Random Forest effectively handles nonlinear 
relationships, it does not fully capture intricate dependencies, 
leading to occasional mispredictions. XGBoost showed better 
consistency than SVM and Random Forest but still exhibited 
deviations, particularly for higher generation levels, limiting its 
predictive accuracy. 

ANN effectively captured the nonlinear dependencies among 
predictors, ensuring high accuracy in predictions. SVM, 
however, failed to do so, leading to reduced accuracy and 
misalignment in the regression plot. Random Forest 
demonstrated some ability to manage nonlinear relationships 
but struggled with intricate dependencies, as seen in the 
increased scatter. XGBoost improved upon SVM and Random 
Forest handling nonlinear patterns but fell short of ANN’s 
precision and consistency. 

Among all models, ANN emerged as the most reliable, with 
high alignment to the perfect-fit line, minimal scatter, and 
strong generalisation across different values of hydroelectric 
generation. XGBoost provided better predictive alignment than 
SVM and Random Forest but lacked ANN's precision. Random 
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Forest showed moderate accuracy but struggled with higher 
generation values, while SVM exhibited the weakest predictive 
performance due to significant deviations from the regression 
line. 

V. CONCLUSION 
This study used four artificial intelligence-based models, 

ANN, SVM, Random Forest, and XGBoost, to forecast 
Malaysia’s hydroelectric power generation using historical 
socioeconomic data from 1980 to 2021. The models were 
assessed using multiple performance metrics, including MSE, 
R, regression plots, error histograms, and learning curves. 
Among the models evaluated, the ANN model showed the most 
promising results, achieving a testing MSE of 1.1541×10⁴and 
an R value of 0.9962. These outcomes suggest that ANNs offer 
stronger predictive capabilities in capturing the nonlinear 
relationships between socioeconomic factors and hydropower 
generation. While XGBoost and Random Forest also 
demonstrated reasonable performance, SVM showed lower 
accuracy in this context. Overall, the findings support the 
potential of AI-based models, particularly ANN, as valuable 
tools to assist in forecasting tasks related to renewable energy, 
offering a data-driven perspective that could complement 
traditional planning methods. 

VI. FUTURE RECOMMENDATIONS 
Future research could benefit from expanding the range of 

input variables to include climatic and hydrological factors such 
as rainfall, river discharge, and reservoir levels, which are 
directly linked to hydropower generation. Incorporating these 
variables may help optimise model performance and improve 
predictive accuracy. Additionally, exploring hybrid or 
ensemble modelling approaches that combine the strengths of 
multiple algorithms may offer further improvements in 
forecasting reliability. Regional or plant-specific datasets are 
also recommended to yield more localised insights, which can 
be valuable for site-level energy planning. From a policy 
standpoint, energy planners are encouraged to adopt AI-based 
forecasting tools as part of the decision-making process. These 
tools can support more accurate energy projections and 
facilitate strategic planning, contributing to Malaysia’s broader 
goals of energy diversification, low-carbon development, and 
long-term sustainability in the power sector. 
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