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Abstract—Hydropower plays a significant role in Malaysia’s
renewable energy mix, particularly in regions with abundant
water resources such as Sarawak. Accurate forecasting of
hydroelectric generation is increasingly important to support
effective energy planning and the country’s sustainability
objectives. This study explores the performance of four machine
learning models: Artificial Neural Networks (ANN), Support
Vector Machines (SVM), Random Forest, and XGBoost in
forecasting Malaysia’s hydroelectric power output using
socioeconomic indicators, including Gross Domestic Product
(GDP), energy consumption, and population. ANN demonstrated
the most promising results among these models, achieving a testing
Mean Squared Error (MSE) of 1.1541x10* and a correlation
coefficient (R) of 0.9962. These results suggest that ANN can
capture the underlying patterns within the data and may offer a
valuable tool for improving the reliability of hydropower
generation forecasts, thereby contributing to Malaysia’s ongoing
efforts toward renewable energy development.

Index Terms— Artificial Neural Network, economic indicators,
energy consumption, energy forecasting, GDP, hydroelectric
power, machine learning, population, Random Forest, Support
Vector Machine, XGBoost

I. INTRODUCTION

Hydropower has long contributed to Malaysia’s renewable
energy development, particularly in regions with abundant
water resources such as Sarawak. According to the Malaysia
Renewable Energy Roadmap (MyRER), it is identified as one
of four key areas for expanding clean energy, alongside solar,
bioenergy, and emerging technologies [1]. The roadmap
outlines targets to increase renewable energy’s share in the
national installed capacity mix to 40% by 2035, with
hydropower remaining a relevant and established component.
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As of 2023, hydropower accounted for approximately 15% of
Malaysia’s total energy mix, reflecting its continued role in
national energy planning. In support of this, initiatives such as
the Feed-in Tariff (FiT) and Low Carbon Power Generation
(LCPG) have been introduced to promote small-scale hydro
projects and facilitate a shift toward low-carbon energy
development [1].

Beyond electricity generation, hydropower can potentially
deliver broader social and environmental benefits, especially in
rural and less-developed areas. Recent reviews indicate that
small-scale hydropower is receiving growing attention in
Peninsular Malaysia as a means to meet local energy needs
while reducing reliance on fossil fuels [2]. Although Malaysia
is estimated to have over 29,000 MW of gross hydropower
potential, only a portion of this capacity has been utilised to date
[2]. This indicates an opportunity for further development in the
sector, which could support energy diversification and local
development objectives.

Accurate forecasting of hydropower generation is becoming
increasingly crucial as Malaysia pursues a more sustainable and
balanced energy mix. However, traditional forecasting methods
often face limitations in modelling the complex, nonlinear
interactions that characterise energy systems, particularly when
socioeconomic variables are involved. In recent years, Artificial
Intelligence (AI) and Machine Learning (ML) techniques have
gained attention for improving forecasting accuracy. Models
such as ANN, SVM, Random Forest, and XGBoost have shown
promising results in energy-related studies due to their capacity
to learn patterns from large and complex datasets [3], [4].

Socioeconomic factors such as GDP, energy consumption,
and population growth are recognised as influential drivers of
energy production and demand. Their interrelationships can
shape trends in hydropower generation, particularly in
developing economies. For instance, Bawazir et al. [5] found
that long-term patterns in renewable energy use, including
hydropower, are closely tied to economic performance in
Pakistan, suggesting the presence of feedback between energy
development and economic growth.

This study compares four Al-based models, ANN, SVM,
Random Forest, and XGBoost, to forecast Malaysia’s
hydroelectric generation using historical socioeconomic data.
By evaluating model performance under consistent conditions,
the study offers insights into the potential of data-driven
approaches to support more informed and effective energy
planning. The remainder of this paper is organised as follows:
Section 2 presents the literature review, followed by Sections 3
and Section 4, which cover the methodology and the results and



discussion, respectively. The last two sections provide the
concluding remarks and recommendations.

II. LITERATURE REVIEW

This literature review examines previous studies on
hydroelectric power forecasting. It discusses the importance of
accurate forecasting and the main challenges involved. The
review also explores the role of socioeconomic factors such as
GDP and population, and compares traditional forecasting
methods with modern machine learning approaches. The goal
is to provide an understanding of current practices and potential
areas for improvement.

A. Hydroelectric Generation Forecasting: Importance and
Challenges

Hydroelectric power plays a crucial role in the renewable
energy mix of many countries. In Indonesia, for example,
hydropower accounted for 57% of all electricity generated from
renewable sources by the end of 2021, underscoring its
dominance over more intermittent sources such as wind and
solar [6]. The reliability, flexibility, and efficiency of
hydropower often exceed 90% making it a promising option for
countries looking to reduce dependence on fossil fuels [6].
Additionally, its ability to provide ancillary services, stabilise
fluctuations in other renewable energy sources, and respond
quickly to demand changes strengthens its potential to support
energy security [7]. Furthermore, hydropower is considered an
environmentally friendly alternative to conventional fossil-
fuel-based generation, offering a cleaner means of electricity
production [7].

However, forecasting hydroelectric generation involves
several challenges due to various environmental and external
factors. Seasonal rainfall, temperature variations, and changes
in inflow patterns introduce a high degree of uncertainty in
predicting hydropower output [8]. For instance, in the Indian
Himalayan region, extreme silt buildup during monsoon
seasons has led to frequent shutdowns of hydro units to avoid
turbine damage, resulting in significant capacity losses [9].
These environmental factors are compounded by socio-
economic and regulatory influences, such as competing water
demands and operational constraints, which further complicate
prediction accuracy [7]. The non-linear relationships between
generation and external factors, such as the effects of climate
change on water levels and melting rates, also add complexity
to forecasting models [10].

Reliable forecasting of hydroelectric generation is critical for
effective energy planning and decision-making. Accurate
predictions of inflows and generation capacity are essential for
optimising resources, ensuring the economic viability of
hydropower projects, and preventing overuse or underuse of
infrastructure [11]. Poor forecasting can lead to operational
inefficiencies, such as unutilized capacity or excessive wear on
equipment, which have financial consequences [12].
Additionally, in the context of modern power systems, reliable
forecasts of hydropower generation are vital for balancing grid
stability, especially when integrated with variable energy
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sources like wind and solar [4]. The growing adoption of Al-
based forecasting methods highlights the increasing recognition
of the need for accurate, timely insights to manage hydropower
assets effectively [12], [13].

B. Socioeconomic Indicators and Their Relevance in Energy
Forecasting

Including socioeconomic indicators such as GDP,
population, and energy consumption in hydroelectric energy
forecasting is grounded in their direct influence on energy
demand and development planning. Energy is a key driver of
national development, influencing industrial growth and overall
economic progress [13]. Energy consumption patterns,
influenced by household occupancy and environmental
conditions, are fundamental when predicting demand. For
instance, combining occupancy data with energy usage and
weather variables has been shown to improve prediction
accuracy, with R? values surpassing 0.85 in some models [14].
These findings suggest that incorporating socioeconomic
variables such as population behaviour provides essential
context for understanding energy consumption trends.

Several studies have confirmed that electricity demand is
closely linked to economic growth and demographic changes.
As population sizes increase and urbanisation spreads,
electricity demand rises due to higher technological adoption
and infrastructure development [15]. For example, emerging
energy systems in smart cities have highlighted the importance
of integrating socioeconomic factors, although this integration
remains challenging due to the diverse nature of the data
involved [14]. The increasing importance of population and
economic variables in forecasting reflects a broader trend where
socioeconomic progress drives energy demand growth.

In hydroelectric energy, socioeconomic factors can influence
both energy demand and the design of energy systems. In Iran,
for instance, forecasts of energy consumption have been
significantly improved by incorporating GDP and population
data alongside traditional energy consumption measures [16].
Hydroelectric power plants serve multiple purposes beyond
electricity generation, including flood control, irrigation, and
water storage, all of which align with broader socioeconomic
needs [13]. However, factors such as community resistance to
displacement, fiscal constraints, and a lack of skilled labour in
some developing countries complicate the deployment of
hydroelectric systems [7]. These challenges demonstrate the
importance of considering socioeconomic variables when
evaluating the feasibility and effectiveness of hydroelectric
power projects.

C. Traditional and Statistical Approaches in Hydropower
Prediction

Historically, traditional time series models such as
Autoregressive Integrated Moving Average (ARIMA),
regression-based techniques, and grey models have been widely
adopted for hydropower forecasting due to their straightforward
mathematical structure and interpretability. These models have
shown reliable performance, particularly in capturing linear
trends and periodic behaviours in time-series data. ARIMA, in
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particular, has been favoured for its ability to handle temporal
dependencies, and has been a standard for modelling
hydrological time series [17]. Regression techniques, such as
multiple linear regression and k-Nearest Neighbour, have also
been used for short-term water level prediction because of their
simplicity [18]. However, while these statistical tools perform
well under stable, linear conditions, they may struggle when
dealing with nonlinearity and variable interactions that
characterise real-world hydropower systems [4].

Despite their historical significance, traditional methods
have limitations that may affect their performance in more
complex forecasting scenarios. Multivariate regression models
are effective for analysing cross-sectional data but struggle to
capture dynamic temporal patterns in time series forecasting.
This limitation becomes more apparent in hydrological
systems, where relationships between variables like rainfall,
inflow, and power generation can change over time. ARIMA
models help capture stationarity and seasonality, but rely on
linear assumptions, which can limit their performance when
dealing with complex or highly variable inputs such as
fluctuating climatic conditions or sudden demand spikes [19].
Furthermore, these models can fail to predict extreme
hydropower production or peak inflows, which are crucial for
operational planning in energy generation [18]. Traditional
models are also sometimes prone to overfitting, mainly when
employed in simpler single-model approaches, where
sensitivity to hyperparameter tuning may affect their predictive
accuracy [19].

Given these challenges, researchers have been exploring
more advanced techniques, including machine learning models
and hybrid approaches, which have shown promise in capturing
nonlinear patterns and multi-factor interactions more
effectively than traditional methods. Such techniques can
provide improved performance in forecasting complex
hydropower systems, especially in environments characterised
by significant variability [20].

D.Machine Learning in Energy Forecasting: A Growing Trend

In recent years, machine learning (ML) has been used for
energy forecasting, gaining increasing attention, driven by the
need for accurate and adaptive models that can handle complex,
nonlinear data. Although traditional models have their merits,
they often fail to capture the intricate relationships within
modern energy systems. As a result, ML has emerged as a
promising alternative, offering flexibility and the ability to learn
from data without relying on rigid assumptions. The integration
of ML into areas like hydropower and renewable energy
forecasting has shown potential in improving system efficiency
and grid stability, although its widespread impact is still being
explored [13], [21].

Several ML models have been widely applied in energy
forecasting, with ANN, SVM, Random Forests, and Gradient
Boosting models such as XGBoost being among the most
commonly used. ANN is favoured for its ability to model
nonlinear relationships and temporal dependencies in data [22],
while SVM is often preferred for its generalisation capabilities,
particularly in situations with smaller datasets [4]. Random
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Forest and XGBoost, on the other hand, have gained
recognition for their robustness and high predictive accuracy,
particularly when dealing with high-dimensional or noisy data
[15], [23]. Additionally, hybrid models that combine multiple
ML approaches are being explored to overcome the limitations
of single models and improve forecasting accuracy [20].

Unlike traditional statistical methods, ML models provide
several advantages, including handling nonlinearities, feature
interactions, and temporal dependencies in a way that
conventional methods cannot. For instance, an ANN can
automatically extract complex patterns from data, which
improves forecasting accuracy and enables the handling of
time-series data more effectively [22], [24]. Ensemble methods
like Random Forest and XGBoost offer robust performance and
can mitigate the effects of overfitting, leading to more reliable
predictions. These strengths help explain why ML is rapidly
becoming an essential tool for energy forecasting, providing a
more flexible and data-driven approach compared to traditional
models [21], [25].

E. Artificial Neural Networks (ANN) in Hydropower and
Energy Forecasting

ANNSs have demonstrated their utility in energy forecasting,
primarily due to their capacity to model complex, nonlinear
relationships in data. For instance, ANN models have been
applied to predict energy consumption in buildings, where they
can capture nonlinear patterns that traditional statistical
methods may not fully address [20]. In hydropower forecasting,
ANN models have been explored to predict reservoir inflows
and energy production. While they have shown potential,
performance varies depending on the specific model
configuration and the data used, indicating the importance of
proper setup and data selection [18]. Furthermore, ANN models
have been successfully implemented in predicting electricity
demand based on temperature variations, where they
outperformed some existing methods, highlighting their
effectiveness in handling multivariate inputs [26].

The strength of ANNSs lies in their ability to model complex,
nonlinear behaviours, making them particularly well-suited for
systems like energy forecasting, where such relationships are
common. For example, ANNs can effectively capture the
dynamic and nonstationary behaviour of electricity markets and
hydropower systems, adapting to changing conditions like
seasonal variations [17]. This ability to approximate continuous
functions allows ANN models to perform well in renewable
energy forecasting and other areas with fluctuating patterns
[16]. In wind speed forecasting, ANN models have also
demonstrated their ability to provide more accurate predictions
than traditional models such as ARIMA, especially when
dealing with high variability in the data [22].

However, despite their strengths, ANNs come with
challenges. One of the main concerns is the risk of overfitting,
especially when models are trained on small or noisy datasets.
This can limit their generalisation capabilities, making them
less effective on unseen data [21]. Additionally, ANNs require
substantial computational resources and large datasets for
practical training [8]. Another limitation is their lack of



interpretability, which can be problematic in applications where
understanding the decision-making process is essential.
Furthermore, optimising ANN models requires careful
parameter selection and substantial trial-and-error, which can
be time-consuming [3]. Despite these challenges, ANNs remain
a powerful tool in energy forecasting when applied with
appropriate care and resources.

F. Ensemble Methods (Random Forest and XGBoost) in Energy
Modelling

Ensemble learning has proven to be a highly effective
approach in energy modelling due to its ability to combine
multiple models to improve prediction accuracy. Techniques
such as Random Forest and Extreme Gradient Boosting
(XGBoost) are particularly noted for their robustness and
ability to handle complex, nonlinear relationships in data. By
combining multiple decision trees, Random Forest helps reduce
variance and overfitting, thus enhancing prediction reliability.
It has been successfully applied in energy forecasting tasks,
including predicting building energy consumption and
hydropower generation based on climate data. In one study,
Random Forest demonstrated lower normalised root mean
square error (NRMSE) compared to other models, showcasing
its effectiveness in handling multivariate regression tasks with
features like cooling degree days and historical consumption
[10], [27].

XGBoost, an optimised gradient boosting technique, offers
strong predictive performance by iteratively correcting the
errors of previous models. Known for its high flexibility and
accuracy, XGBoost has been widely used in short-term load
forecasting and renewable energy prediction. In many cases,
XGBoost outperforms other methods, particularly when
dealing with large, complex datasets that involve intricate
feature interactions. Studies have shown that XGBoost can be
highly effective when integrated into hybrid models. For
instance, a hybrid ensemble model combining Random Forest,
XGBoost, and time series components like Seasonal Naive
achieved an R? value of 0.95941 and significantly improved
forecasting accuracy and robustness compared to standalone
models [19], [20].

In conclusion, Random Forest and XGBoost are valuable
tools in energy modelling. Random Forest is praised for its
robustness and ability to reduce overfitting, making it suitable
for handling diverse input data. On the other hand, XGBoost is
recognised for its high predictive accuracy and flexibility,
particularly in complex datasets. When these methods are used
in hybrid models, they can complement each other’s strengths,
leading to improved overall performance in energy
consumption and generation forecasting [21], [27].

I1I.

This chapter presents the methodology to develop and
evaluate four machine learning models for forecasting
hydroelectric power generation based on key socioeconomic
indicators. The main goal is to identify the most reliable model
for predicting hydroelectric generation using variables such as
GDP, Energy Consumption, and Population.

METHODOLOGY
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The overall methodological framework outlined in the
flowchart, as shown in Fig. 1, is structured into five main stages:
(1) data collection and preprocessing, (ii) model architecture and
configuration, (iii) training and validation process, (iv) testing
and performance evaluation, and (v) result analysis and
comparison. Each stage is designed to ensure consistency and
fairness in model comparison using the same dataset,
performance metrics, and evaluation conditions.

By examining the performance of each machine learning
technique under the same experimental setup, this study aims to
offer insights into model suitability for forecasting
hydroelectric generation using socioeconomic inputs under
identical experimental conditions.

Data Collection and
Preprocessing

¥

Develop and Configure All Four
Machine Learning

¥

¥

Training & Validation Process

¥

Testing and Performance
Evaluation

Do all
AL models mee
performance

criteria?

If No

Result Analysis and Comparison

Fig. 1. Flowchart of the Project

A. Data Collection and Preprocessing

This study used annual data from 1980 to 2021, sourced from
the Malaysia Energy Information Hub and Macrotrends,
ensuring reliable coverage of key socioeconomic and energy
indicators. The selected input variables were GDP, Energy
Consumption, and Population, while the target variable was
Hydroelectric Power Generation.

Before model training and evaluation, the dataset underwent
preprocessing steps to ensure consistency and eliminate biases
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caused by differences in data scales. Min-max normalisation
was used for the ANN model as shown in (1)[28], required by
the Neural Net Fitting App. This technique typically scales each
feature to a fixed range [0, 1]. This ensures that all input values
are within the same scale, essential for neural networks to
converge efficiently during training.

x _ (x - xmin) (1)
norm (xmax - xmin)
For SVM, Random Forest, and XGBoost, z-score

normalisation as shown in (2) was applied programmatically to
align with each algorithm's internal assumptions [28]. Where p
is the mean and o is the standard deviation of the feature. Z-
score normalisation benefits algorithms like SVM, which are
sensitive to feature scaling when computing distances or
defining decision boundaries. This standardisation method
transforms the data to have a mean of 0 and a standard deviation
of 1.
Xsta = _(x 1 @
o
Any missing values in the dataset were handled using
appropriate imputation methods to ensure completeness
without sacrificing data integrity. After preprocessing, the data
was divided into training and testing sets in a 70-15-15 ratio.
This split allowed for balanced model development, tuning, and
unbiased performance evaluation across all models.

B. Model Selection and Configuration

To evaluate the comparative performance of various machine
learning approaches in forecasting hydroelectric generation,
this study employed four distinct models: ANN, SVM, Random
Forest, and XGBoost. These models were selected due to their
individual strengths and proven reliability in regression and
energy-related forecasting applications, offering a balanced
representation of both traditional and ensemble-based learning
techniques.

The ANN was chosen for its ability to capture complex,
nonlinear interactions between input variables. Due to its
capacity to model nonlinear relationships, the ANN can
perform effectively even with datasets of modest size. In this
study, the ANN was implemented using MATLAB’s Neural
Net Fitting App, chosen for its convenience and built-in tools
for preprocessing, partitioning, and visualising training
performance, regression diagrams, and error histograms.

The ANN model architecture consisted of three input
neurons (GDP, Energy Consumption, and Population), one
hidden layer with ten neurons, and a single output neuron for
hydroelectric generation. The model was trained using the
Levenberg—Marquardt algorithm with a maximum of 1000
epochs, a performance goal of zero, and early stopping after six
validation failures. Training was halted at epoch 13 in practice
when no further improvement was observed in validation
performance.
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SVM was selected based on its strong performance in high-
dimensional spaces and suitability for small datasets. Using the
fitrsvm function in MATLAB with a Radial Basis Function
(RBF) kernel, the SVM model was designed to capture non-
linear relationships with minimal manual configuration. The
input data were standardised using z-score normalisation before
training to align with the algorithm’s assumptions.

Random Forest was included in the study due to its
robustness against overfitting and ability to manage datasets
with irrelevant or noisy features. Implemented using
MATLAB?’s fitrensemble function with the Bagging method,
the model was allowed to use default parameters to reflect its
base-level performance.

Similarly, the XGBoost model was incorporated due to its
reputation for high accuracy and computational efficiency in
structured data problems. Built using the same fitrensemble
function but with the LSBoost (Least Squares Boosting)
method, XGBoost constructs trees sequentially to minimise
residual errors, making it particularly effective in refining
predictions over iterations.

Although the ANN was developed through a graphical
interface, while the other models were coded via scripting, all
were trained on the same preprocessed data using identical
inputs and evaluation metrics. To ensure transparency and
reproducibility, the specific configurations and training
parameters used for each model are summarised in Table 1.

TABLEL MODEL CONFIGURATIONS AND TRAINING PARAMETERS
Model MATLAB Tool / Learning Method Key Parameters
Function (Values)
ANN Neural Net Fitting  Levenberg— 3 input neurons
App Marquardt (GDP, Energy,
Population)
1 hidden layer with 10
neurons
Performance goal: 0
Max iterations: 1000
Validation checks: 6
Initial Mu: 0.001
Early stopping at
epoch:13
SVM fitrsvm Support Vector Box constraint: 1
Regression (RBF  Kernel scale: auto
Kernel) Epsilon: 0.1
Random fitrensemble Bagging Learning cycles: 100
Forest (Ensemble Trees) Learner type: Tree
Max splits: 10
Min leaf size: 1
XGBoost fitrensemble LSBoost Learning cycles: 100
(Boosted Trees)  Learning rate: 0.1

Learner type: Tree

C. Training and Validation Process

Each model was trained using the same 70% training subset,
with the remaining 30% split equally into validation and test
sets. This partitioning was controlled using MATLAB’s
partition function for the SVM, Random Forest, and XGBoost
models, ensuring randomised and consistent splits. For the
ANN model, data division was configured directly within the



Neural Net Fitting App, allowing internal training, validation,
and test ratios to be set as 70%, 15%, and 15%, respectively.

During the training phase, each model learned the functional
mapping between the selected input features (GDP, Energy
Consumption, and Population) and the target output
(Hydroelectric Generation). The validation subset was used to
monitor the model’s generalisation ability and detect any signs
of overfitting or underfitting. While the Neural Net Fitting App
offered built-in visualisation tools, the remaining models
required explicit validation handling via code and plotting.

In addition to the standard train-validation-test split, a five-
fold cross-validation procedure was applied to all models to
assess their generalisation performance. This involved dividing
the dataset into five equal parts and iteratively training on four
parts while testing the remaining one. The process was repeated
five times so that each fold served as the test set once. All five
iterations' performance metrics (MSE and R-value) were
averaged to provide a more reliable predictive accuracy and
robustness evaluation.

D. Performance Evaluation and Comparison

Model performance was assessed using two key evaluation
metrics: Mean Squared Error (MSE) and the correlation
coefficient (R-value). These were applied to training,
validation, and testing datasets to assess learning behaviour and
generalisation performance. Equation (3) shows the formula of
MSE, where, ¥; represents the predicted values, y; is the actual
value, and n is the number of test samples [29]. A lower MSE
indicates that predictions are closer to the actual outputs. At the
same time, (4) is the formula for the R-value where y is the
mean of the actual values. A higher R-value (closer to 1) reflects
a stronger linear correlation between predicted and actual
values [29].

Regression plots were generated to visualise the relationship
between predicted and actual values, where a tighter alignment
with the 45-degree reference line indicated more accurate
predictions. Additionally, error histograms were produced to
assess residual distribution across all subsets, highlighting
consistency and potential bias.

1 . 3)
MSE ZEZ(% =9y
i=1

Jl‘

This study evaluates the performance of four machine
learning models, ANN, SVM, Random Forest, and XGBoost,
in forecasting hydroelectric power generation using economic
indicators (Population, GDP, and Energy Consumption). Each
model was trained and tested on data from 1980 to 2021, and
evaluated using MSE and R-values, regression plots and error
histograms.
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A. Performance Evaluation of Machine Learning Models

This subsection presents a comparative assessment of model
performance based on the computed MSE and R-values for the
training, validation, and testing phases. A detailed summary of
the performance metrics for ANN, SVM, Random Forest, and
XGBoost is provided in Table 2.

TABLEII. PERFORMANCE EVALUATION OF ANN, SVM, RANDOM
FOREST AND XGBOOST
Models Training Validation Testing
ANN MSE  5.0355e+03 9.3132e+03 1.1541e+04
R 0.9941 0.9788 0.9962
SVM MSE 1.7091e+05 1.6818e+05 1.3031e+05
R 0.9703 0.9865 0.9250
Random MSE  1.0423e+05 7.6374e+04 6.2457¢+04
Forest R 0.9158 0.9453 0.9438
XGBoost MSE  1.2657e+05 1.1475e+05 5.8948e+04
R 0.8487 0.8952 0.9196

ANN demonstrated the highest predictive accuracy among
the evaluated models with the lowest MSE across all phases.
During training, ANN achieved an MSE of 5.0355x103,
significantly lower than the other models, and a substantial R-
value of 0.9941. This trend continued into validation (MSE =
9.3132x10% R = 0.9788) and testing (MSE = 1.1541x10% R =
0.9962), indicating excellent generalisation and minimal error.
In contrast, the SVM model exhibited the highest error, with an
MSE of 1.7091x10° during training. Although its correlation
improved in validation (R = 0.9865), its high testing error (MSE
1.3031x10°) made it less reliable. Random Forest and
XGBoost offered moderate performance, with Random Forest
showing slightly lower error values than SVM, and XGBoost
performing marginally better in testing but struggling in the
training phase.

ANN consistently showed the highest correlation between
predicted and actual values, with R-values exceeding 0.99 in
training and testing, confirming its strong fit to data trends.
Despite having a high R-value of 0.9703 during training, SVM
exhibited a weaker correlation (R = 0.9250) in testing,
suggesting inconsistency in performance across phases.
Random Forest and XGBoost displayed moderate correlation
strengths, with XGBoost having the lowest training R-value
(0.8487), which indicates difficulties in learning underlying
data patterns. Although Random Forest improved validation
and testing, it never reached the correlation levels observed in
ANN.

A key aspect of evaluating model performance is how well
each model generalises to unseen data. The ANN model
showed consistently strong results from training to testing,
suggesting a good balance between model complexity and
generalisation ability. While Random Forest did not surpass
ANN, it showed relatively better generalisation than SVM, as
reflected in the decrease in error from training to validation. The
SVM model maintained relatively stable correlation values,
though the overall error levels remained high, indicating some
limitations in adapting to new data. XGBoost, on the other
hand, appeared to face challenges with generalisation, showing
less consistent performance, particularly during the training
phase, where its correlation was comparatively lower.
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Regarding overall performance, ANN emerged as the most
suitable model for this forecasting task due to its low errors and
high predictive correlation. With its high MSE, SVM was the
least reliable, as it struggled to capture non-linear relationships
effectively. While better than SVM in some aspects, Random
Forest still lagged behind ANN due to higher error rates.
XGBoost showed some promise but suffered from
inconsistencies, particularly in model fitting. These findings
suggest that ANN is the best choice for forecasting
hydroelectric power generation, while other models may
require further optimisation to improve their reliability.

B. Error Distribution and Model Robustness

This subsection explores the distribution of prediction errors
to assess how consistently each model performs across different
datasets. Error histograms offer a visual perspective on the
spread of prediction errors, which can help indicate the
presence of outliers, potential overfitting, and the general
behaviour of each model across datasets. The comparative error
distributions of all four models are shown in Fig. 2.

Compared to the other models, ANN exhibited the most
balanced error distribution, with errors predominantly
concentrated within a narrow range of -90 to 100. A well-
defined peak near zero error suggests strong predictive
accuracy and minimal deviation from actual values. In contrast,
SVM displayed the broadest error distribution, with errors
extending up to £1500 and clustering around -500 and 500,
indicating weaker predictive precision. Random Forest and
XGBoost showed moderate error concentration, with most
errors falling within -500 to 500, but lacked the tight
distribution seen in ANN.

ANN demonstrated a stronger generalisation capability, as
evidenced by its consistent error patterns across training,
validation, and testing phases. The low presence of extreme
outliers further supports its robustness in capturing patterns
with minimal overfitting. Random Forest showed slight
improvements over SVM but still contained significant outliers,
reducing its overall reliability. SVM struggled with
generalisation, as its validation and test errors exhibited high
variance, leading to unreliable predictions. XGBoost provided
better robustness than SVM and Random Forest, but its error
spread remained wider than ANN, suggesting some
inconsistencies in generalisation.

The high concentration of errors around zero in ANN
indicates a superior ability to capture complex relationships
within the data. In this regard, XGBoost performed better than
SVM and Random Forest, but had a lower density in the zero-
error bin, reflecting less precision in modelling the data's
underlying structure. While slightly better than SVM, Random
Forest still showed a long-tailed error distribution, suggesting
occasional large deviations from actual values. These results
indicate that ANN is the most precise model, followed by
XGBoost, while SVM and Random Forest exhibit lower
accuracy in capturing data trends.

Considering error distribution and robustness, ANN emerged
as the most reliable model, maintaining low error spread and
strong generalisation across datasets. XGBoost demonstrated
moderate performance but lacked the precision to match ANN’s
effectiveness. Random Forest showed slight improvements
over SVM, but its inconsistent error distribution limited its
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reliability. SVM exhibited the weakest performance, with high
prediction errors and poor generalisation, making it the least
suitable choice for this forecasting task.
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C. Insights into Regression Plots

To further assess the model’s ability to predict, regression
plots are used to visualise the alignment between expected and
actual hydroelectric generation values. These plots reveal how
well each model captures underlying data patterns. Fig. 3
illustrates the regression performance of all models.

ANN demonstrated the strongest predictive performance,
with its regression plot showing a near-perfect alignment
between predicted and actual values. The data points closely
followed the perfect-fit line, indicating the model's ability to
accurately capture complex relationships between Population,
GDP, and Energy Consumption in predicting hydroelectric
generation. In contrast, SVM exhibited noticeable deviations
from the perfect-fit line, with several scattered data points,
particularly at higher values of hydroelectric generation. This
suggests that SVM struggled to generalise well across the
dataset.

The minimal scatter in the ANN’s regression plot highlights
its strong generalisation capability, making it the most reliable
model tested. Random Forest displayed moderate performance,
with a reasonable alignment to the regression line but increased
scatter for larger hydroelectric generation values. This suggests
that while Random Forest effectively handles nonlinear
relationships, it does not fully capture intricate dependencies,
leading to occasional mispredictions. XGBoost showed better
consistency than SVM and Random Forest but still exhibited
deviations, particularly for higher generation levels, limiting its
predictive accuracy.

ANN effectively captured the nonlinear dependencies among
predictors, ensuring high accuracy in predictions. SVM,
however, failed to do so, leading to reduced accuracy and
misalignment in the regression plot. Random Forest
demonstrated some ability to manage nonlinear relationships
but struggled with intricate dependencies, as seen in the
increased scatter. XGBoost improved upon SVM and Random
Forest handling nonlinear patterns but fell short of ANN’s
precision and consistency.

Among all models, ANN emerged as the most reliable, with
high alignment to the perfect-fit line, minimal scatter, and
strong generalisation across different values of hydroelectric
generation. XGBoost provided better predictive alignment than
SVM and Random Forest but lacked ANN's precision. Random
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Forest showed moderate accuracy but struggled with higher
generation values, while SVM exhibited the weakest predictive
performance due to significant deviations from the regression
line.

V.CONCLUSION

This study used four artificial intelligence-based models,
ANN, SVM, Random Forest, and XGBoost, to forecast
Malaysia’s hydroelectric power generation using historical
socioeconomic data from 1980 to 2021. The models were
assessed using multiple performance metrics, including MSE,
R, regression plots, error histograms, and learning curves.
Among the models evaluated, the ANN model showed the most
promising results, achieving a testing MSE of 1.1541x10*and
an R value of 0.9962. These outcomes suggest that ANNs offer
stronger predictive capabilities in capturing the nonlinear
relationships between socioeconomic factors and hydropower
generation. While XGBoost and Random Forest also
demonstrated reasonable performance, SVM showed lower
accuracy in this context. Overall, the findings support the
potential of Al-based models, particularly ANN, as valuable
tools to assist in forecasting tasks related to renewable energy,
offering a data-driven perspective that could complement
traditional planning methods.

VI

Future research could benefit from expanding the range of
input variables to include climatic and hydrological factors such
as rainfall, river discharge, and reservoir levels, which are
directly linked to hydropower generation. Incorporating these
variables may help optimise model performance and improve
predictive accuracy. Additionally, exploring hybrid or
ensemble modelling approaches that combine the strengths of
multiple algorithms may offer further improvements in
forecasting reliability. Regional or plant-specific datasets are
also recommended to yield more localised insights, which can
be valuable for site-level energy planning. From a policy
standpoint, energy planners are encouraged to adopt Al-based
forecasting tools as part of the decision-making process. These
tools can support more accurate energy projections and
facilitate strategic planning, contributing to Malaysia’s broader
goals of energy diversification, low-carbon development, and
long-term sustainability in the power sector.
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