UNIVERSITI TEKNOLOGI MARA

OPTIMISING A WASTE MANAGEMENT SYSTEM USING THE ARTIFICIAL BEE COLONY (ABC) ALGORITHM

NUR HAMISHA HELANIE BINTI MOHAMAD FADZIL

BSc

July 2025

UNIVERSITI TEKNOLOGI MARA

OPTIMISING A WASTE MANAGEMENT SYSTEM USING THE ARTIFICIAL BEE COLONY (ABC) ALGORITHM

NUR HAMISHA HELANIE BINTI MOHAMAD FADZIL

Proposal submitted in partial fulfilment of the requirements for the degree of **Bachelor of Science (Hons.) Management Mathematics**

Faculty of Computer and Mathematical Sciences

July 2025

APPROVED BY:

.....

SITI HAFAWATI JAMALUDDIN

Supervisor

Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA

ABSTRACT

This study proposed the application of the Artificial Bee Colony (ABC) algorithm to address the Capacitated Vehicle Routing Problem (CVRP) in a real-world waste collection scenario. Effective waste management is critical for maintaining urban cleanliness and sustainability. Inefficient waste collection often suffers from inefficient such as poor route planning, excessive travel distance and underutilization of vehicle capacity. The main objective is to minimise the total travel distance of collection vehicles while reducing carbon emission. The study adopted data from Qiao et al. (2020). The data contain a single depot, 47 waste collection points and 11 vehicles with maximum capacity of 80 tonnes. The ABC algorithm was selected due to its strong global search capabilities, simple structure and ability to balance between exploration and exploitation. The implementation of ABC algorithm consists of four phases which are initialisation, employed, onlooker and scout bee phases. Random insertion applied as a neighbourhood operator to enhance the local search capabilities within the algorithm. The result indicate that the ABC algorithm successfully generates feasible and efficient routing solutions. The result showed a total travel distance of 1408.25 km. Moreover, before optimisation, the total distance travelled was 1458.35 km which resulted in an estimation of 1397.1 kg CO₂. After optimisation, the overall distance decreased to 1408.35 km resulting in a reduction of CO₂ emission of 1348.8 kg CO₂. Overall, the proposed approach shows promise in enhancing the efficiency and responsiveness of real-world waste collection systems. Future work may focus on integrating real-time data, adjusting algorithm parameters and hybridizing ABC algorithm with other metaheuristics to further improve performance.

Keyword: Waste Management System, Artificial Bee Colony Algorithm, Optimisation

TABLE OF CONTENTS

		Page			
ABS	TRACT	iii			
ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS		iv v vii viii ix			
			LIST	Γ OF ABBREVIATIONS	xi
			CHA	APTER 1 INTRODUCTION	1
			1.1	Research Background	1
			1.2	Problem Statement	3
1.3	Research Objectives	4			
1.4	Significance of Study	5			
1.5	Scope of Study and Limitation	6			
1.6	Summary	6			
CHA	APTER 2 LITERATURE REVIEW	7			
2.1	Related Works on Waste Management System	7			
2.2	Related Works on Capacitated Vehicle Routing Problem	8			
2.3	Artificial Bee Colony (ABC) Algorithm	12			
2.4	Summary	15			
CHA	APTER 3 RESEARCH METHODOLOGY	16			
3.1	Data Collection	16			
3.2	Waste Management System	17			
	3.2.1 Objective Function	18			
	3.2.2 Problem Assumption	19			
3.3	Implementation of the Algorithm Proposed	19			
	3.3.1 Initialisation Phase	21			