Malaysian Journal of Computing, 10 (2): 2176-2187, 2025
Copyright © UiTM Press
eISSN: 2600-8238

HAAR CASCADE ALGORITHM FOR MICROSLEEP
DETECTION

Norkhushaini Awang " and Ahmad Mirza Azhar?
" Faculty of Computer & Mathematical Sciences,

Universiti Teknologi MARA, 40450 Shah Alam Selangor,
Malaysia
"nor_awang@uitm.edu.my, 22021470424@student.uitm.edu.my

ABSTRACT

Drowsy driving, particularly due to microsleep episodes, is a significant cause of traffic
accidents, with existing solutions being often too costly or limited for widespread adoption.
This project addresses this critical gap by developing a cost-effective, real-time Internet of
Things (loT)-based anti-microsleep alarm system. The system's development followed a four-
stage process: Planning, Design, Development, and Evaluation. During the development
phase, the system was built in Python using OpenCV and dlib for real-time facial analysis
and the Haar Cascade algorithm for efficient facial feature detection. Key metrics like the
Eye Aspect Ratio (EAR) and lip distance were monitored to identify signs of drowsiness and
yawning. A comprehensive feedback loop was implemented using MQTT for communication
between the Python backend and a Node-RED dashboard, with eSpeak and the Slack API
providing aural and textual alerts. A finding from the evaluation, however, was a sensitivity
to environmental factors as the distance between the driver and the camera increased, the
system's accuracy in detecting drowsiness, yawning, and microsleep declined, leading to an
increased risk of false negatives. Based on these results, future research should focus on
enhancing the core algorithm to be more resilient to variable lighting and distance, thereby
reducing false positives and negatives. Further work is also recommended to explore the
system's integration with vehicle-specific infrastructure, develop more scalable data storage
solutions, and conduct extensive long-term testing to validate its performance in diverse real-
world driving conditions, which will pave the way for its commercial viability and broader
adoption.
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1. Introduction

Driver fatigue, particularly in the form of microsleep episodes, remains a critical and
persistent contributor to vehicular accidents. These brief lapses in consciousness severely
impair a driver's ability to respond to critical sensory information, directly compromising safe
vehicle operation (National Department of Transportation, 2023). The severity of this issue is
discussed by the National Highway Traffic Safety Administration (NHTSA) estimates drowsy
driving causes approximately 100,000 crashes annually in the United States, and the AAA
Foundation for Traffic Safety reports that it accounts for 10% of all accidents (Foundation for
Traffic Safety, 2018; National Department of Transportation, 2023). While existing
interventions, such as rest breaks and caffeine, have proven to have limited effectiveness
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(Dawson et al., 2021), a gap persists in practical, widely adopted technological solutions.
Current systems, including lane departure warnings and some advanced sleepiness detection
technologies, are often restricted by their high cost and limited availability, hindering
widespread implementation (Skorucak et al., 2020). This critical need for effective, affordable
alternatives has prompted a surge in research focusing on Internet of Things (IoT)-based
solutions.

Recent studies have explored the use of unobtrusive wearable technologies and
physiological sensors to create real-time driver drowsiness monitoring systems. These devices
track various parameters such as eyelid closure, head posture, and brain activity. Machine
learning algorithms analyze anomalies in this sensor data to detect microsleep episodes and
the early onset of sleepiness (Jabbar et al., 2020; National Department of Transportation,
2023). A key advancement is the use of IoT connectivity, which facilitates the rapid
transmission of alerts to the driver upon detecting a problematic state (Pauli et al., 2021). The
integration of strain sensors, for instance, has shown promise in identifying microsleep events
through abrupt reductions in muscle tone. In a simulated driving environment, an alarm
system successfully detected these episodes and triggered alerts within an average of 0.96
seconds of onset. As sensor technology continues to advance and 5G network infrastructure
expands, the commercialization of these rapid-response, IoT-enabled devices becomes
increasingly feasible. Ultimately, the widespread adoption of these systems holds significant
potential to mitigate the risks associated with driver fatigue and substantially decrease the
occurrence of traffic accidents.

2. Literature Review

Microsleep is a condition characterized by brief periods of unconsciousness, typically lasting
between 1 and 15 seconds, and is often caused by fatigue from insufficient rest (Zaleha et al.,
2021). Factors such as long-distance driving, certain health conditions like Obstructive Sleep
Apnea (OSA), and specific road or weather conditions can contribute to its occurrence
(Biswal et al., 2021; Pham et al., 2023). Microsleep events, which are often accompanied by
abrupt reductions in muscle tone, can be identified through strain sensor readings. For
instance, an lIoT-based alarm system was successfully tested in a driving simulator, where it
detected microsleep episodes and triggered alerts within an average of 0.96 seconds of their
onset. The integration of IoT technologies has accelerated the development of these advanced
systems. Wearable physiological sensors, coupled with machine learning algorithms, provide
a more comprehensive understanding of driver alertness by analyzing multiple parameters
simultaneously, including eye movements and heart rate variations (Sudarshan et al., 2023).
The ability of these systems to process data in real time and provide prompt interventions is
crucial for mitigating accidents caused by driver drowsiness. Ongoing advancements in
sensor technology and the expanding 5G network infrastructure could further facilitate the
commercialization of these solutions, making them more accessible and effective in reducing
traffic accidents related to driver fatigue.

The proposed project addresses the issue of driver microsleep, a factor in traffic
accidents. Existing literature highlights the severity of this problem, with drowsy driving
being a major contributor to a substantial number of accidents annually (Foundation for
Traffic Safety, 2018; National Department of Transportation, 2023). Previous research has
explored the characteristics of microsleep, including its causes and categories (Zaleha et al.,
2021; Skorucak et al., 2020; Pham et al., 2023; Biswal et al., 2021; Jabbar et al., 2020;
Sumitha & Subha, 2020). Past research work has underscored the need for practical and
effective solutions to mitigate the risks associated with microsleep. Past studies have been
defining the problem and its physiological underpinnings, they often fall short in providing a
real-time, integrated, and scalable solution. Many existing approaches rely on laboratory
settings which are limited by computational constraints, making them impractical for
widespread vehicular integration. The current project addresses this gap by developing a real-
time, Internet of Things (IoT)-based system to detect microsleep events. This approach is a
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combination of techniques for feature extraction, interconnected technologies for data
processing and alert generation. By integrating these elements, the project offers a deployable
and immediate solution compared to the primarily theoretical and laboratory-based
contributions. This comparison highlights the project's contribution to the field not just in
identifying the problem, but in providing a practical, and technologically advanced solution
that can be integrated into real-world applications.

The implementation of the Haar Cascade algorithm is an element in the real-time
detection of facial features, specifically eye closure. This algorithm is well-regarded for its
computational efficiency, which makes it highly suitable for processing continuous video
streams and promptly identifying the subtle changes in eye state that are indicative of
microsleep episodes (Balcero-Posada et al., 2022). The proposed system monitors and
analyzes data from a camera module. Its primary focus is on two key metrics which are EAR
and the lip distance. By continuously evaluating these parameters, the system can discern
specific patterns associated with the onset and occurrence of microsleep. This approach is
predicated on the physiological changes that occur during a microsleep event, which are
reliably captured through these quantifiable facial metrics. The discussions presented above
are summarized in Table 1, which provides a comprehensive overview of the literature
review. This table systematically compares key findings and contributions from various
studies, highlighting their direct relevance to the current research on microsleep detection.

Table 1 Literature Review Comparison Table

Key Findings/ Relevance to
Issues Author(s) Contributions the Study
Zaleha et al. (2021); Defines microsleep, its Provides
Skorucak et al. causes, and categories. foundational
(2020); understanding of
Microsleep Pham et al. (2023); the problem
Characteristics Biswal et al. (2021); being addressed.
Jabbar et al. (2020);
Sumitha and Subha
(2020)
Pauli et al. (2021); Explores the use of [oT Highlights the
IoT Integration National Department for enhanced technological
in Microsleep of Transportation microsleep detection context and
Detection (2023); Balcero- and real-time potential
Posada et al. (2022) monitoring. solutions.
Sudarshan et al. Discusses the role of Emphasizes the
(2023) IoT in improving importance of
IoT and . .
. vehicle safety through IoT in the
Vehicle Safety . .
fatigue detection proposed
systems. solution.
Balcero-Posada et al. Reviews sensors, Informs the
Microsleep (2022); hardware tools, and selection of
Detection Sudarshan et al. algorithms used for appropriate
Technologies (2023) microsleep detection. technologies for
the project.
Impact of Foundation for Highlights the dangers Justifies the
Drowsy Traffic Safety (2018); of drowsy driving and significance and
Driving and Dawson et al. (2021) the necessity for purpose of the
Need for effective detection and research.
Solutions prevention systems.

In conclusion, the current research landscape provides a foundation for the
development of driver fatigue detection systems. While prior studies have defined the nature
of microsleep, its causes, and the associated risks of drowsy driving, a critical gap remains in
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the implementation of practical and integrated solutions. The literature highlights the potential
of Internet of Things (IoT) technologies and various detection algorithms, but a
comprehensive, real-time system that combines these elements for widespread application has
not yet been fully realized. Therefore, this project addresses a vital need by synthesizing
existing knowledge to create an innovative and effective system. This not only builds upon
the foundational understanding of microsleep but also offers a tangible, technologically
advanced solution to a well-documented and urgent safety problem.

3. Research Methodology

Figure 1 shows a flow chart, outlines the methodology for developing the microsleep
detection system. The process is divided into four main stages which are planning, design,
development, and evaluation. The planning phase establishes the project's foundation by
defining the problem statement, studying related works, and setting clear objectives and a
project scope. This initial work provides the necessary context and direction for the
subsequent stages. Following this, the design phase focuses on creating the system's
architecture. It involves selecting the appropriate hardware and software, designing the
system's schematics, and creating a user-friendly interface. The development phase then
moves into the hands-on creation of the system. This stage includes writing and compiling the
code, building the system, establishing a database, and developing a dashboard with
notifications. Finally, the evaluation phase rigorously tests the system's performance. In this
phase, key parameters are identified, and the system's accuracy in detecting drowsiness,
yawning, and microsleep is tested and analyzed to ensure its overall effectiveness.

Evaluation Phase

Test Accuracy for Drowsiness,

P Evaluation P dentiy Parameter »
Yawning and Microsleep.

P Analyze the Efiectiveness
»  Development
Development Phase

Develop Dashboard &
¥ Design » Write Code & Install Compiler #  Buid System & Datsbase 4 ?
Notifications

Design Phase

P Select Hardware & Sofware ¥ Design System Schematics ¥ Dasign User Interface

Plznming Phase

»  Determine Problem Statement »  Siudy Related Works P Define Objeciives & Scope

Figure 1. System Development Flowchart
3.1 Haar Cascade Algorithm

The Haar Cascade algorithm, introduced by Viola and Jones in 2001, stands as a foundational
machine learning-based approach for real-time object detection in computer vision (Bade and
Sivaraja, 2020). This technique employs a cascade function, a series of stages containing
classifiers that identify specific Haar-like features. These features are essentially rectangular
filters that measure the difference in intensity between adjacent image regions. The
algorithm's computational efficiency, crucial for its real-time performance, is achieved
through the use of an integral image to rapidly calculate these features (Bade and Sivaraja,
2020).

The classifier is trained using the AdaBoost algorithm, which iteratively selects and
combines the most discriminative features from a vast pool of positive and negative training
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images to form a robust classification model. Once trained, this model can efficiently scan
images at various scales and positions to detect the target object, making it particularly well-
suited for real-time applications like face detection (Jain et al., 2018). Although deep learning
methods have since emerged with superior accuracy and versatility, the Haar Cascade
algorithm's enduring relevance stems from its speed and computational simplicity. In the
context of developing IoT applications for driver microsleep detection, this efficiency is a
critical advantage. The algorithm enables the system to continuously monitor a driver's face
and eye movements, providing a reliable and low-latency method for detecting signs of
drowsiness and triggering timely alerts to prevent accidents. This makes the Haar Cascade
algorithm an invaluable component, ensuring effective operation within the constrained
computing environments often associated with IoT devices. Its application here mirrors
broader trends in machine learning where efficient algorithms are vital for practical solutions,
such as in crop yield prediction (Fashoto et al., 2021) and regression model analysis
(Adewoye et al., 2021).

3.2 Project Development

The project development sequence diagram illustrates the operational workflow of the
proposed loT-based microsleep alarm system, delineating the interactions between the driver
and the system's components, and emphasizing the temporal sequence of actions and data
exchanges critical for the detection and mitigation of microsleep events. As shown in Figure
2, the process initiates with the Driver engaging with the Headband Sensors through device
usage. These sensors, integral to the system's functionality, are designed to capture and
transmit pertinent biometric data indicative of driver drowsiness. The data includes
parameters such as eye and eyelid movements.

Driver Headband Sensors Onboard System Alarm System Node-RED Slack

Wears Headband
Transmits Biometric Data (Eye and Eyelid)

Analyzes Data with ML Algorithms
R
—
Calculates Drawsiness Score
s
ED
o [Drowsiness Score > Threshold]
Activates Alams

Alerts Driver

[Drowsiness Score <= Threshold]

Sends Data
>

Updates Dashboard Gauge
Joe =3

Sends Notification

Takes Preventive Actions

Driver Headband Sensors Onboard System Alarm System Node-RED Slack

Figure 2. Project Development Sequence Diagram

Upon acquisition by the Headband Sensors, the biometric data is continuously
transmitted to the Onboard System. This system, characterized as a processing and alarm
device mounted in the car, constitutes the central processing unit, responsible for the real-time
analysis of the incoming sensor data. The Onboard System employs machine learning
algorithms to analyze the received biometric data, with the objective of deciphering the
driver's state of alertness. A core function of this analysis involves the computation of a
Drowsiness Score, a quantitative metric derived from indicators such as decreased heart rate
variability, changes in prefrontal cortex activity, increased eyelid closure time, and slowed
blink rates. The subsequent sequence of operations is conditional, predicated on the value of
the calculated Drowsiness Score. If the Drowsiness Score surpasses a predefined threshold,

2180



Awang et al., Malaysian Journal of Computing, 10 (2): 2176-2187, 2025

the Onboard System triggers the Alarm System. This action is designed to provide multi-
modal alerts, incorporating auditory, visual, and tactile cues, to the Driver, thereby prompting
immediate corrective actions.

On the other hand, if the Drowsiness Score remains below the established threshold,
the Onboard System transmits the processed data to Node-RED. Node-RED, an IoT
application platform, is then responsible for updating the dashboard gauge to provide a visual
representation of the driver's drowsiness level. Additionally, Node-RED facilitates the
transmission of notifications to Slack, a communication platform, via a webhook, enabling
the logging of driver alertness status and the potential alerting of remote stakeholders. The
concluding interaction depicted in the sequence diagram involves the Driver's potential
response, which may include actions such as initiating a rest stop or modifying driving
behavior, based on the alerts and information provided by the system. In summary, the
sequence diagram illustrates the system's operational dynamics, from the initial capture of
biometric data to the provision of alerts and information to the driver.

4. Result

Based on the provided class diagram in Figure 3, the NodeRED class functions as a pivotal
interface for data visualization and external communication within the system. It encapsulates
key attributes such as a dashboardGauge, representing a user interface element for visual
data presentation, and a webhookURL, facilitating outgoing notifications to external
services. Its  operational capabilities are defined by methods including
updateDashboard (float), responsible for refreshing the visual display with relevant
data, and sendNotification(String, String), enabling alerts or information
dissemination.  Significantly, NodeRED's receiveData (OnboardSystemData)
method allows it to acquire processed information, specifically OnboardSystemData
instances containing drowsiness scores and sensor readings, directly from the
OnboardSystem. This data is then displays to the Driver, making NodeRED the
primary channel for conveying real-time system insights and alerts to the user, thereby
bridging the analytical backend with actionable driver awareness.

+triggerd ystem]
+sendData(NodeRED)

v L NodeRED ol

+dashboardGauge: UlSiement
+webhookURL: Stiing

supdateDashboard(foat)
+sendNotfication{Siring, String)
sreceiveData(OrboardSystemDats)

stype: String
scue: String

Figure 3. Node Red Class Diagram
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The deployment of eSpeak on Windows systems typically involved a structured,
sequential installation and configuration process. Initially, users obtained the eSpeak
executable from its official repository or other verified software distribution channels.
Subsequently, the installation routine was executed, guiding users through on-screen prompts
to complete the setup. During this phase, customization options, such as specifying the
installation directory and selecting supplementary components, were available. Post-
installation, eSpeak could be utilized via the command-line interface or integrated into
software applications using programming languages such as Python or C++. The command-
line interface facilitated text-to-speech conversion through specific commands, allowing users
to define speech attributes including voice type, pitch, and speaking rate. For programmatic
integration, developers leveraged eSpeak's Application Programming Interface (API) or
dedicated wrapper libraries to seamlessly embed text-to-speech capabilities into their
applications. Furthermore, post-installation customization options enabled users to refine
voice attributes, language preferences, and pronunciation rules, thereby personalizing the
voice synthesis output to meet specific requirements. This comprehensive process,
encompassing a straightforward initial setup followed by detailed customization and
integration steps, enabled effective utilization of its text-to-speech functionalities, as
illustrated in Figure 4.

SAPI5 TTSAPP —

X

0

Mouth Position Enter text you wish spoken here,
Open File

ptions
b Speak
Pause

Stop
Skip |0 _1::"]

Speak wav

Reset

Voice ‘M\cmsnﬁ Hazel Desktop - English (Great Elnt‘ﬂ

Rate }

Volume |

Fomat  [16kHz 16 Bt Mono = [ ]

Saveto wav |

™ Show all events
™ Process XML

Figure 4. Text-to-Speech Conversion

This project's implementation focuses on leveraging the capabilities of the OpenCV
and dlib libraries within a Python environment to establish a robust system for real-time facial
analysis and weariness detection. The foundational step involved importing essential modules
for various operational aspects. These included scipy.spatial.distance for
geometric calculations, imutils for streamlined image processing, and numpy for efficient
numerical operations. Concurrent execution was enabled through threading, while
argparse facilitated command-line argument handling. Core functionalities were supported
by d1ib for sophisticated facial landmark detection and cv2 in OpenCV for comprehensive
image and video processing. Furthermore, pyttsx3 was integrated for text-to-speech (TTS)
capabilities, complemented by modules for data serialization to manage data structures
effectively. Communication protocols were established using paho.mgtt.client for
MQTT messaging, and os was utilized for interacting with the operating system, as
illustrated in Figure 5. This integration of libraries and modules underpins the system's ability
to perform sophisticated real-time facial analysis for detecting driver fatigue.
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! Frame

Figure 5. Facial Analysis

The system's implementation for weariness detection and real-time facial analysis is
developed in Python, leveraging robust and widely used libraries such as OpenCV and dlib. A
critical initial step is the importation of modules, including scipy.spatial.distance
and numpy, which are essential for the mathematical computation of fatigue metrics like the
Eye Aspect Ratio (EAR) and lip distance. The imutils library is strategically employed to
optimize the video processing pipeline by enabling efficient access to video streams, frame
resizing, and grayscale conversion. Facial detection and the precise extraction of 68 facial
landmarks are accomplished using the dlib package with a pre-trained model. This is a
fundamental component, as the accuracy of EAR and lip distance calculations is directly
dependent on the precise identification of these landmarks. As depicted in Figure 4, within the
main execution loop, video frames are continuously read via cv2 and then subjected to dlib's
face detection and shape prediction techniques.

Concurrently, the system actively monitors these metrics for indicators of driver
tiredness or yawning, triggering an immediate and critical alarm upon detection. This real-
time analysis is a feature designed to provide a response to potential safety hazards. For
external data analysis and system integration, the MQTT client publishes the computed EAR
and lip distance values to designated topics in JSON format. This is a step for enabling the
system to communicate with other devices or dashboards, as shown in Figure 6. Visual
feedback is a continuous and integral aspect of the system's operation. OpenCV (cv2)
displays processed frames, which are text annotations indicating the alert status, EAR, and lip
distance. This visual information provides feedback to the driver and aids in system
debugging. Furthermore, the system is designed with a provision for a smooth program exit,
ensuring proper resource cleanup by closing active windows, disconnecting the MQTT client,
and terminating the video stream, which is vital for facilitating seamless API integrations and
broader data exchange.
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Figure 6. Real-time Fatigue Detection

A primary challenge in developing a real-time driver fatigue detection system is the
occurrence of both false positives and false negatives. As seen in Table 2, the system's
performance is dependent on environmental factors, particularly the distance between the
driver and the camera. This variability can lead to issues, such as false positives and false
negatives. False positives, where the system incorrectly identifies a non-drowsy state as
fatigue, often arise from momentary facial occlusions or natural actions like sneezing. These
unwarranted alerts can cause driver frustration and erode confidence in the system's
reliability, potentially leading to the alerts being ignored. Conversely, false negatives, which
occur when genuine signs of drowsiness are missed, present a critical safety risk. This failure
to detect fatigue can be attributed to suboptimal conditions such as poor lighting, head
position changes, or a greater distance from the camera, which can diminish the accuracy of
facial landmark detection. The system's core metrics, such as EAR and lip distance, may not
consistently fall below the necessary thresholds under these circumstances. To address these
issues, mitigation strategies are essential. Enhancing the algorithm to differentiate between
brief eye closures and genuine fatigue patterns is crucial for reducing false positives.
Similarly, developers must focus on making the system more resilient to variable lighting and
distance to minimize false negatives and ensure its primary objective of improving driver
safety is met.

Table 2 Performance Analysis by Distance

Distance Effectiveness Accuracy Accuracy Accuracy

(cm) Drowsiness Yawning Microsleep Explanation

Stable feature
detection due
to ideal
lighting and
landmark
visibility
Consistent
feature
detection
under adequate
lighting
conditions

30-40cm Excellent 85-90% 85-90% 90%+

50-60cm Good 75-85% 75-85% 85-90%
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Distance Effectiveness Accuracy Accuracy Accuracy

(cm) Drowsiness Yawning Microsleep Explanation

Unstable
feature
detection
resulting from
smaller facial
landmarks

70-90cm Fair 60-70% 60-70% 70-80%

Feature
detection
failure due to
loss of
landmarks and
reduced face
bounding box
accuracy

>100cm Poor <50% <50% <60%

The developed system for real-time fatigue detection emphasized the integration of
robust technologies and adherence to coding standards. It primarily leveraged OpenCV and
dlib for facial recognition and landmark identification, utilizing EAR and lip distance
calculations as key metrics for monitoring driver gaping and fatigue in real-time video data.
The implementation featured a comprehensive feedback loop, employing the MQTT protocol
for seamless communication between the Python backend and Node-RED, complemented by
the Slack API for notifications, MongoDB for data storage, and eSpeak for aural alerts. This
successfully demonstrated real-time fatigue detection capabilities, while also highlighting the
need for improved data aggregation and filtering methods to address encountered challenges
and guide future enhancements of the technology.

5. Conclusion

In conclusion, this project successfully developed and validated a real-time driver fatigue
detection system using a combination of the Haar Cascade algorithm, OpenCV, and dlib
within a Python environment. The system's effectiveness was demonstrated through its ability
to accurately monitor key metrics such as EAR and lip distance, and to trigger timely alerts
via an IoT-based alarm system and notifications to a Slack channel. While the current system
shows significant promise, future research should focus on mitigating key limitations,
particularly the occurrence of false positives and false negatives, which are highly sensitive to
environmental factors like lighting and camera distance. Addressing these challenges will
require enhancing the core algorithm with more advanced machine learning models that are
more resilient to these variables. Furthermore, future work could explore integrating the
system with vehicle-specific infrastructure, developing a more scalable and robust data
storage solution beyond MongoDB, and conducting extensive long-term testing to validate its
performance in diverse real-world driving conditions, paving the way for its commercial
viability and widespread adoption.
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